
D6.3: COMPOSITIONAL TECHNIQUE TO VERIFY ADAPTIVE SE-
CURITY AT LOADING TIME ON-DEVICE

Arnaud FONTAINE, Samuel HYM, Isabelle SIMPLOT-RYL (INR); Olga GADYATSKAYA, Fabio
MASSACCI, Federica PACI (UNITN); Jan JURGENS, Martin OCHOA (TUD)

Document Information

Document Number D6.3
Document Title Compositional technique to verify adaptive security

at loading time on-device
Version 2.9
Status Final
Work Package WP 6
Deliverable Type Report
Contractual Date of Delivery M18
Actual Date of Delivery M18
Responsible Unit INR
Contributors INR, UNITN, TUD
Keyword List Verification, On-device
Dissemination PU

Document change record

Version Date Status Author (Unit) Description
0.1 2010/05/27 Working S. Hym, I. Simplot-Ryl (INR) Plan and document

structure, chapters
Overview & Notations

0.2 2010/06/13 Working I. Simplot-Ryl (INR) Addition of chapter
Global policy

0.3 2010/06/16 Working I. Simplot-Ryl (INR) Update to chapter No-
tations

0.4 2010/06/16 Working O.Gadyatskaya, F. Massacci
(UNITN)

Update to the Overview
chapter, addition of
chapter Rel works, cor-
rections to the chapter
Notations

0.5 2010/06/17 Working O.Gadyatskaya (UNITN) Update to the Overview
chapter: section 2.5.1,
some typos fixed

0.6 2010/06/18 Working O.Gadyatskaya (UNITN) Glossary and abbrevia-
tions updated

0.7 2010/06/18 Working I. Simplot-Ryl (INR) Update to chapter
Global policy

0.8 2010/06/18 Working O.Gadyatskaya, F. Massacci
(UNITN)

Chapter on direct con-
trol flow added

0.9 2010/06/24 Working A. Fontaine, S. Hym, I.
Simplot-Ryl (INR)

Chapter on transitive
control flow added

1.0 2010/06/24 Working A. Fontaine, S. Hym, I.
Simplot-Ryl (INR)

Update of chapter
Overview

1.1 2010/06/27 Working I. Simplot-Ryl (INR) Cleaning of bibliogra-
phy

1.2 2010/06/28 Working I. Simplot-Ryl (INR) Chapter on non-
interference added

1.3 2010/06/28 Working A. Fontaine, I. Simplot-Ryl
(INR)

Update of related works

1.4 2010/07/02 Working O.Gadyatskaya (UNITN) Update of the Chapter
Overview (RelWorks
merged, new pictures,
cleaning)

1.5 2010/07/02 Working O.Gadyatskaya (UNITN) Executive summary
and Conclusion drafts
added

1.6 2010/07/03 Working I. Simplot-Ryl (INR) Update of non-
interference

1.7 2010/07/04 Working S. Hym,I. Simplot-Ryl (INR) Update of chapter
Global policy

1.8 2010/07/04 Working A.. Fontaine,I. Simplot-Ryl
(INR)

Update of chapter
Overview

On device verification: compositional technique | version 2.9 | page 2 / 80

1.9 2010/07/05 Working O.Gadyatskaya, F.Paci
(UNITN)

Chapter Overview
fixed, final draft of
Chapter Direct Control
Flow submitted

2.0 2010/07/05 Working I. Simplot-Ryl (INR) Minor updates in
Summary, Chapter
non-interference

2.1 2010/07/06 Working O.Gadyatskaya (UNITN) General check, typos
fixed

2.2 2010/07/09 Working F. Piessens (KUL) Review of the docu-
ment

2.3 2010/07/14 Working K. Bekoutou, E. Chiarani
(UNITN)

First quality check
completed, other minor
changes requested

2.4 2010/07/14 Working A. Fontaine, I. Simplot-Ryl
(INR)

Style changes, cor-
rections after quality
check, section 1.6
added

2.5 2010/07/15 Working O.Gadyatskaya (UNITN),
J.Jurgens, M.Ochoa (TUD)

Link with WP4, threat
model updated

2.6 2010/07/16 Working A. Fontaine, I. Simplot-Ryl
(INR)

Check of 1.6, 3.6, cor-
rections of bibliography,
related works, style

2.7 2010/07/19 Working O.Gadyatskaya (UNITN) Update to Introduction
2.8 2010/07/20 Working K. Bekoutou, E. Chiarani

(UNITN)
Final quality check. Mi-
nor changes requested

2.9 2010/07/23 Final I. Simplot-Ryl (INR) Corections according to
final quality check

On device verification: compositional technique | version 2.9 | page 3 / 80

Executive summary

This document describes compositional techniques to verify evolving security at load-
ing time on small embedded devices (multi-application smart cards). Such small devices
have restricted memory and usual run-time monitoring techniques cannot be applied on
them. General overview of the targeted systems and possible verification workflows are
provided.

Chosen security properties belong to information protection. In order to preserve
information exchange security in a dynamic environment, where the applications from
different stakeholders can evolve and talk to each other, the device should be able to verify
the updates autonomously and in a very lightweight fashion. The proposed techniques
cover such parts of the information protection requirement as control flow and special
type of non-interference.

Control flow verification provides assurance, that there is no illegal invocation of ap-
plication services. Chapters 3, 4 and 5 are dedicated correspondingly to direct control
flow, transitive control flow and global control flow on-device verification techniques. The
chapter 3 also contains the link with the notation provided by WP4.

Non-interference verification is based on the lightweight information flow on-device
verification that can be performed with the STAN tool. Chapter 6 describes this approach
and enhances it with a compositional verification technique for a security domains hierar-
chy.

On device verification: compositional technique | version 2.9 | page 4 / 80

Index

Document information 1

Document change record 2

Executive summary 4

1 Introduction: Overview of the compositional on-device verification 12
1.1 The system . 12
1.2 Multi-application Smart Card Architecture 15
1.3 Security properties . 17

1.3.1 Security Properties of the Case Study 17
1.3.2 Control flow property . 18
1.3.3 Non-interference property . 19

1.4 Verification techniques properties . 19
1.5 Verification Workflows . 20

1.5.1 On-device Verification . 20
1.5.2 Lightweight Verification . 22

1.6 Threat model . 23
1.7 Related Works . 23

2 Notations 26
2.1 Mathematical notations . 26

2.1.1 Functions . 26
2.1.2 Graphs . 26

2.2 Notations for programs . 27
2.2.1 Object-oriented notations . 27
2.2.2 Application level definitions . 27
2.2.3 Graphs of the programs . 28

2.3 On-device system . 29
2.3.1 Definition of the system . 29
2.3.2 Changes: addition of new elements in a system 29

3 Direct Control Flow 30
3.1 Introduction . 30
3.2 Formal Security Model . 31
3.3 Specifications of Contract and Components 33

3.3.1 Different approaches for accepting updates 35
3.4 Validation of the Security-by-Contract Approach 36
3.5 Security-by-Contract Architecture . 37
3.6 Link with WP4 Notation . 38

On device verification: compositional technique | version 2.9 | page 5 / 80

3.7 Conclusions . 39

4 Transitive Control Flow 40
4.1 Introduction . 40
4.2 Model for control of service calls between applications 41

4.2.1 Systems and security policies . 41
4.2.2 Semantics of the security policy . 42
4.2.3 Generic security policies . 42

4.3 On-device algorithms . 43
4.3.1 Addition of a new application . 43
4.3.2 Addition of new domains . 46

4.4 Implementation on Java-enabled smart cards 47
4.4.1 Concrete instantiation of the model 47
4.4.2 Encoding control flow policies . 48
4.4.3 Integration of on-device algorithms 48

4.5 Multi-application use case on smart card . 49
4.5.1 Overview of the use case . 49
4.5.2 Implementation and deployment considerations 50
4.5.3 Enforcement of control flow policies 51

4.6 Conclusion . 52

5 Global Policy 53
5.1 Introduction . 53
5.2 Notations and definitions . 53
5.3 Definition of the global policy . 54
5.4 Global policy footprint of a method . 54

5.4.1 Definition of the footprint of a method 55
5.4.2 Properties of the operations on footprints 56
5.4.3 Compositionality of the footprint computation 59

5.5 Implementation of the footprint computation 59
5.6 On-device verification . 63

5.6.1 Lightweight verification . 63
5.6.2 Encoding of the embedded proof . 64
5.6.3 On-device meta-data . 64
5.6.4 Verification algorithm . 65

5.7 Conclusion . 65

6 Non-interference 68
6.1 Overview of the information flow model of the STAN tool 69

6.1.1 Security levels . 69
6.1.2 Flow relation . 70
6.1.3 Flow signature of a method . 71
6.1.4 Enforcing non-interference . 72
6.1.5 Implementation . 72

6.2 Non-interference policies for GlobalPlatform 72
6.2.1 GlobalPlatform policies . 72

6.3 On-device verification . 74
6.3.1 On-device meta-data . 74
6.3.2 Verification of a new application . 74
6.3.3 Addition of a domain . 75

On device verification: compositional technique | version 2.9 | page 6 / 80

6.3.4 Addition of a non-interference policy 75
6.4 Conclusion . 76

7 Conclusion 77

Bibliography 78

On device verification: compositional technique | version 2.9 | page 7 / 80

List of Figures

1.1 Verification Workflow for Evolution . 14
1.2 Java Card Architecture . 16
1.3 GlobalPlatform + Java Card Architecture . 17
1.4 Control flow properties . 18
1.5 Non-interference properties . 20
1.6 Security-by-Contract Architecture . 22
1.7 Lightweight verification . 23

3.1 Example of a diagram annotated with << control flow >> 38

4.1 Overview of application interactions on the use case. 50

5.1 Transfer function instr b(S). 62

On device verification: compositional technique | version 2.9 | page 8 / 80

List of Tables

2 Abbreviations used in the document . 10
3 Glossary . 11

On device verification: compositional technique | version 2.9 | page 9 / 80

Abbreviations and Glossary

Abbreviations

Abbreviations References
AID Application IDentifier
API Application Programming Interface
CAD Card Acceptance Device
CAP Converted APplet
GP GlobalPlatform
JCRE Java Card Run-time Environment
JVM (JCVM) Java Virtual Machine (Java Card Virtual Machine)
S×C Security-by-Contract
TTP Trusted Third Party

Table 2: Abbreviations used in the document

On device verification: compositional technique | version 2.9 | page 10 / 80

Glossary

Term Definition
Applet Java Card application
Contract Formal specification of applet’s security relevant be-

havior
GlobalPlatform Consortium and specification it provides for secure

management of multi-application smart card contents
Java Card Hardware-independent technology to run multiple ap-

plications on smart cars or other small devices with
restricted capabilities

OPEN Card manager on GlobalPlatform

Table 3: Glossary

On device verification: compositional technique | version 2.9 | page 11 / 80

1. Introduction: Overview of the composi-
tional on-device verification

The goal of this deliverable is to define how to verify at loading time on a small device that
mobile code respects chosen security properties. This technique should be compositional
to allow extensions of the system to be performed without re-verification of already loaded
code. In this chapter we provide a general overview of the targeted systems, the chosen
security properties and the verification workflows, before going into technical details on
the verification methodology.

1.1 The system

Open multi-application environments such as PCs and mobile platforms are widespread.
The main characteristics of such environments are co-existence of several applications
on one single platform and the possibility of this platform to evolve by adding new appli-
cations or updating of existing ones in a fully distributed and autonomous way. Without
a security policy regulating (unwanted) information exchange the problem is relatively
simple.

Modern smart cards could be another example of such a multi-application environ-
ment. Everybody has in his wallet half a dozen of plastic cards, mostly smart cards.
Would not it be nice to have at least some of them unified into one card? The first re-
search papers on multi-application smart cards appeared more than 10 years ago [23],
but the industry has not yet adopted an open multi-application smart card paradigm (in
a sense of applications coming and going dynamically from different stakeholders) [40].
Even examples of potentially multi-stakeholders applications are de facto a single one: a
loyalty Miles& More Lufthansa credit card [14], could include a Lufthansa application for
collecting miles and a Bank application; de facto it is just a credit card and mileage is cal-
culated by the back-end system. Usually the applications on the card are produced by the
same provider. Even in the case when the applets are coming from different stakeholders,
they were produced accordingly to very precise and restrictive preliminary agreements,
that describe the exact structure of the applets and the way they execute and exchange
information.

For usual multi-application environments, like PCs, users take decisions what to install
and run on their platforms at their own risk. A lot of security solutions, like firewalls, were
developed in order to prevent malicious or buggy applications to steal data. In the domain
of smart cards the price of data is even higher, since the cards are often used to store
sensitive information (personal data, biometrics, bank account details and so on). The
restricted memory and computational capabilities of smart cards make them an easier
target for frauds, since it is not possible to implement a lot of security mechanisms on
smart card platform.

On device verification: compositional technique | version 2.9 | page 12 / 80

The absence of solutions, when the applets can be provided by different stakeholders
and without strict preliminary agreements, can be explained by the gap between the
security certification process and the business model behind evolution. The most popular
solution for smart card systems now is GlobalPlatofrm (GP) [27] 1 on top of Java Card
[32]. Smart card vendors usually develop their own proprietary solutions, implementing
some functionality of GP for secure loading of applications, handling keys of security
domains, supporting applications life-cycle and unloading of applications if necessary
[9, 44]. Currently smart card vendors obtain a compliance certificate w.r.t. the appropriate
security standards (e.g. [33]). This certification is essentially an off-line verification of the
platform and all the applications on it. If any security-relevant change occurs on the
platform, the certificate will no longer be valid. In order to obtain a new certificate the
smart card owner has to re-verify from scratch all the platform and the applications. This
approach is not compositional and costs a lot. Thus smart card providers might as well
develop an open multi-application platform, but, at the end of the day, they prefer to lock
the card to forbid addition of new applications, changes in the policy and so on [45].

Nevertheless, the applications’ interactions on the card are a very interesting target for
smart card users and developers. People would like to be able to install on a single card
all transport applets from different cities they visit or loyalty applets of various supermar-
ket chains they shop in. If the applications could exchange information and use services
of each other directly on the platform, for example, multiplying royalty points, providing
some details of discount rates and so on, the customers would be even more satisfied.
But openness of the smart card platform can create certain vulnerabilities, for example,
already verified application can be updated in a way that it will break the information ex-
change security policy of the card. Existing security mechanisms and approaches, which
we will describe further in this section, cannot protect the applications’ data sufficiently.

In the context of SecureChange, the validation of the platform code is addressed by
the Work Package 7. Thus, we consider applications in an open system with the following
definitions:

Application a coherent code unit, compiled simultaneously by its producer in order to
be deployed on a multi-application smart card.

Open system (smart card platform) a set of software units which can be dynamically
extended with new software units.

The systems can evolve by addition of new applications or elements of applications,
thus in the context of security verification, they must fulfill the following requirements:

Consistency guarantees the security of already installed applications while installing a
new application,

Incrementality certifies the security of a newly deployed application.

In order to support evolution, we need a way for the platform to certify that applications
arriving on the platform comply with the policy.

If we must combine the security policies of multiple applications from different ven-
dors with application A, saying that application B should not be allowed to call A’s favorite
service, the task is tricky. It becomes daunting when applications come and go, au-
tonomously, asynchronously and in a distributed fashion. When an application arrives or
changes it is necessary to check whether it complies with the security policies of other

1GlobalPlatform is a specification for secure management of the card multi-application contents

On device verification: compositional technique | version 2.9 | page 13 / 80

Figure 1.1: Verification Workflow for Evolution

applications already on the platform. Systems with enough computation power can use
run-time monitors to control the applications [15]. But even for mobile devices the best
solution might be to verify or at least certify newcomers at loading time. The idea was
investigated by Sekar et al. when the notion of model-carrying code was introduced
[43], has been successfully demonstrated in the Security-by-Contract (S×C) approach for
.NET and Java [17, 15], and was later adopted by W. Enck et al. for Android security
[19]. Figure 1.1 shows the basic idea. An application arrives with a specification (formal
description) of its behavior or this specification is extracted from the code on device. The
specification is then checked for compliance with the security policy of the platform.

Why cannot this be done with the approaches for load time evolution just cited?

• In traditional mobile code security the mobile platform policy dictates to whom an
application can talk to.

• In the multi-application smart card domain the smart card platform is neutral but the
applications dictate by whom they can(not) be called.

We propose an addition to the smart card security architecture that preserves the
security level of the smart card when the content of the card changes, so the card itself
can verify security properties of the applications when the following changes happen:

• Loading of a new application on the platform.

• Update of an existing application on the platform.

• Removal of an existing application from the platform.

• Update of the platform security policy.

On device verification: compositional technique | version 2.9 | page 14 / 80

The changes that we address in this deliverable are conservative extensions of the
system, that is to say, extensions of the system that do not require deletions or changes
of parts of the system. Consequently, we concentrate in this deliverable on the problem
of arrival of a new application on the card and incremental updates of the applets on the
platform, the other types of changes will be addressed later in the Deliverable 6.4.

1.2 Multi-application Smart Card Architecture

Smart cards are strongly constrained in terms of memory and computation resources.
Standard Java virtual machines and runtime environments are not suitable for such sys-
tems because of mechanisms such as garbage collector or threads that are too greedy
for resources, but also because of the very large API that contains unneeded features
(AWT, Swing, reflection, etc.).

Java Card is a hardware-independent technology for multi-application smart cards,
which allows post-issuance updates of the card contents [32, 13]. It is the most popular
solution for smart cards today, because it brings the convenience of Java language to
the smart card platform. Java runtime environments and virtual machines deployed on
smart cards follow the Java Card specifications [3] from Sun, which is a subset of stan-
dard Java with some additional frameworks related to the underlying hardware (APDU,
cryptographic abilities, etc.) and to the Java Card application model. There exist two
main branches of Java Card specifications, 2.x and 3.x, with strong differences. Speci-
fications of Java Card 3.x virtual machine and environment are closer to standard Java
specifications than Java Card 2.x, but Java Card 3.x is quite recent and not yet adopted
by manufacturers. For this reason, we chose to focus on Java Card 2.x specifications.
Java Card architecture consists of several layers as illustrated in Figure 1.2:

• a device hardware,

• an embedded (native) operating system,

• a Java Card Runtime Environment (JCRE) built on top of the embedded operating
system.

• the applications installed on the smart card, that are called applets.

Applets, before being loaded on the smart card, are converted on the terminal by
Java Card Virtual Machine (JCVM) interpreter into a CAP file, that is a binary executable
representation of the Java classes that compose the applet. The JCRE is responsible for
managing and executing applets. It is composed by a JCVM interpreter, native API, Java
API, and an application installer. The installer downloads and installs the applications on
the card. To load an application, the installer interacts with an off-card installation program
which transmits the CAP file via a card acceptance device (CAD). Once received the CAP
file, the installer, optionally, checks the signature of the file to ensure integrity and to prove
the identity of the application provider. Then, the installer saves the content of the file into
the card’s persistent memory, resolves the links with other applets already present on the
card, creates an instance of the applet and registers it to the JCRE. Then on-card part of
JCVM, which consists of a bytecode interpreter, executes the code contained in the CAP
file.

Java Card applications, applets, are identified by a unique Application IDentifier (AID)
that are assigned by the International Standards Organization (ISO) as defined in the
ISO-7816 standard.

On device verification: compositional technique | version 2.9 | page 15 / 80

Figure 1.2: Java Card Architecture

The applets installed on the smart card belong to different packages (contexts) and
they are isolated by the Java Card firewall. Java Card applets can receive commands
from outside the card through a specific protocol called APDU, but they cannot directly
interact with each other. The firewall allows only applets that belong to the same context
to access the respective methods. If an applet (server) wants to share data with another
applet (client) from a different context, it has to implement a shareable interface which
defines a set of methods that are available to other applets. These methods (they are also
called services) are the only methods of the server applet that are accessible through the
firewall. The firewall will pass the call to the shareable interface method from the client
applet to the server applet. In the current security model the server has an access control
list of the applications, that are allowed to use this method, embedded into the server
code. If the client is in the list, the access is granted and the server passes through the
firewall the reference to its service. If the client is not in the list, it only gets null. As well,
if there is no server applet installed on the card, or the called service is not provided, the
firewall will also pass null to the client.

Technically speaking, applications developed for Java Card are instances of sub-
classes of the Applet class, and every shareable object is an instance of a class that
implements the Shareable interface from the Java CardAPI. Access to objects shared by
an application is not controlled by the Java Card environment; each application is entirely
responsible for the access control to its shared objects relying on AIDs of requesters.

This security mechanism is not very flexible, as any changes to the security policy
require to change the code of the applet (potentially introducing new bugs) and can be
easily compromised by the evolution of the smart card platform. The JCRE allows to
install and update the applets on the card even after the issuance. If the client has been
updated, the server will still grant it an access, though now it cannot really be sure of the
trustworthiness of the client. Also, if the server really needs to update its access control
list, the server’s owner can do it only at a very high price of full card recertification.

GlobalPlatform specifications [2] are generally used to enhance interoperability and
security of Java Card environments deployed on open (for post-issuance updates) smart
cards, especially those dealing with sensitive information such as SIM cards or credit
cards. Indeed, GlobalPlatform proposes standardized and secure features for post-

On device verification: compositional technique | version 2.9 | page 16 / 80

Figure 1.3: GlobalPlatform + Java Card Architecture

issuance (un)installation of applications through encrypted communication channels as
well as secure application management thanks to the security domains architecture. A
security domain is a privileged application, that stores cryptographic keys of its provider
and manages some applications of the same provider. All the communications of these
applications with the terminal are held through the security domain. Typically, each stake-
holder on the platform has its own security domain. Security domains can be as well
organized hierarchically. In the same way as Java Card applets, each security domain
is uniquely identified by an AID, and its access is governed by a public key infrastruc-
ture. The set of initially available security domains is defined by the card manufacturer.
GlobalPlatform specifications also include the possibility for the card issuer to create sup-
plementary security domains after issuance. Intentionally, GlobalPlatform specifications
do not clearly define permitted/forbidden interactions between applications according to
their installation domains in order to let implementations fit specific needs and objectives.

Example 1.2.1 Typical GlobalPlatform on top of Java Card architecture is presented in
Figure 1.3. There are two security domains installed on the platform, namely Bank se-
curity domain and Transport security domain. Bank security domain belongs to a stake-
holder Bank, who is also the card issuer, and manages two applications: EMV , that is
a Europay – MasterCard – VISA standard banking applet, and ePurse, which is an elec-
tronic purse for small transactions. Transport security domain belongs to a stakeholder
Transport and it manages jT icket application.

1.3 Security properties

1.3.1 Security Properties of the Case Study

Our targeted scenario of evolution is software update, specified in the POPS scenario
description. General security property that we address is Information protection, as de-
scribed in [6]:

Citation 1.3.1 (Information Protection) The applications on the card must be “isolated”
(segregation), that means no illegal access to the data from one application to another.
For that several security policies are described and assumed to be implemented on the
card, like the Java Card firewall (access control implemented by the virtual machine)
or the security domains of GlobalPlatform. Therefore, some properties must be verified,

On device verification: compositional technique | version 2.9 | page 17 / 80

C.sendSMS()

A

B

C

Direct flow

Transitive flow

C.sendSMS()

B.m()

Figure 1.4: Control flow properties

when an applet is added on the card, like the consistency of the security domain hierarchy,
the non-violation of the information flow policy implemented on the card, etc.

In this deliverable, we focus mainly on general information flow properties, that can
be of two categories:

Control flow properties that can informally be expressed as:

• “An application A is allowed to invoke the operation m1 but not the operation
m2”.

These properties express who is allowed to call “dangerous” methods such as ac-
cess to operating system properties or sending of SMS for example.

Non-interference properties that can informally be expressed as:

• “secrets of applications cannot leak to public observers”

This non-interference property is often called information flow in the literature (see
[39] for a survey). We add on top of the non-interference property some rules to
control exchange of secret informations, like for example:

• “secrets of applications can be transmitted to authorized parties”.

Chapters 3, 4, and 5 will focus on control flow property, whereas Chapter 6 will con-
sider non-interference.

1.3.2 Control flow property

Control flow properties have been widely studied for many years, in fields like distributed
computations [20] or for behavioral specification in VHDL [34]. More recently, they have
been used to express security properties and in a recent work they were applied to small
autonomous devices like Android phones [19].

We distinguish three different kinds of control flow that can be desired:

Direct control flow allows to verify that an application (or an element of a system) only
calls services which it is allowed to call;

Transitive control flow adds to the previous one the transitivity property: an application
that is not allowed to call a service cannot delegate the call to another application.

On device verification: compositional technique | version 2.9 | page 18 / 80

Global control flow adds to the previous ones a notion of interaction between services:
an application can be allowed to call a service but not allowed to call a sequence of
services.

The first one is sufficient to check in a very light way the use of services that are
offered by trusted applications. For example, in a Unix system, a user is not allowed
to access the properties of the system, but he is allowed to call services offered by the
system that will provide him some answers. Direct control flow is the property that Java
Card firewall enforces, but, as we have shown, without big flexibility for evolution. The
second property is necessary in a multi-applicative context to avoid collusion between
applications. The third one is necessary to express restriction on the usage of the device,
for example: it is not allowed to send more than three SMS, or it is not allowed to use
camera and send http requests.

Let us consider example of Figure 1.4: application A is not allowed to call the service
sendSMS of application C. Then, there is an illegal direct control flow if A tries to call C,
and an illegal transitive control flow if A calls the service m of B, which calls the service
sendSMS of application C.

1.3.3 Non-interference property

Information flow analysis, as defined in [39], detects how data may flow between vari-
ables, focusing on data manipulations of primitive types. This analysis is used to check
data propagation in programs with regard to security levels and aims to avoid that pro-
grams leak confidential information: observable/public outputs of a program must not
disclose information about secret/confidential values manipulated by the program. Non-
interference [24] defines the absence of illicit information flows by stating that public
outputs of a program remain unchanged if the secret inputs are modified. Data are
labeled with security levels, usually high for secret/confidential values and low for ob-
servable/public variables.

Some information flows arise from assignments (direct flow), others from the control
structure of a program (implicit flow). For example, the code l=h generates a direct flow
from h to l, while if(h) then l=1 else l=0 generates an implicit flow also from h to l. If h
has a security level high and l low, then the examples are insecure, as secret data can
be inferred by the reader of l.

1.4 Verification techniques properties

To achieve the above-mentioned goals, we provide on-device verification techniques that
must ensure the next results:

Autonomous on-device verification : devices must be able to verify autonomously the
mobile code they receive,

Minimal re-verification load : additions to the system must be handled without re-
verifying the already loaded code (or with a minimal re-verification).

Moreover, as we want to be able to address small devices, the memory footprint of
the verification algorithms has to be considered as an important criterion:

Low footprint depending on their footprint, verification algorithms will be available for
different kinds of devices.

On device verification: compositional technique | version 2.9 | page 19 / 80

observer....

int pincode;

secret

int name;

public

Observer

name = pincode;

Make the secret

visible for the

Figure 1.5: Non-interference properties

Thus the proposed techniques must be at least incremental and compositional, and if
possible use algorithms with low complexity and small memory needs.

Security properties enforcement can be achieved by:

• verification at compilation time, which is not compatible with our target environment,
as for Java Card compilation is done on the terminal and the deployment context is
unknown,

• testing, which is not suitable on device when new mobile code arrives,

• policy in-lining, which is impossible to perform on a smart card,

• monitoring at execution time, which would penalize the performance,

thus, we use in the following :

Verification at loading time that is before running the new code. Load time verification
will only increase the time to make an application available on the system, but not
the runtime performance.

1.5 Verification Workflows

Depending on the verified properties and on the device itself, the device may be able
to establish the properties or not. We will see in the following chapters that the control
flow properties can be established by devices as small as a smart card, whereas non-
interference properties need algorithms including fixed point computation that are too
heavy for such systems. In this section we provide descriptions of the workflows for
verification being performed only by device and by device and terminal together.

1.5.1 On-device Verification

The best solution for security is to enable the card with the means to verify new application
only by itself and independently from every stakeholder. For reasonably small security
properties, such as control flow, the card security mechanisms can indeed be extended
with load time application verification.

On device verification: compositional technique | version 2.9 | page 20 / 80

We have already discussed, that smart cards with GlobalPlatform on top of Java Card
have certain security mechanisms: firewall between applications, signature-checking
mechanism, it can be as well enhanced with partial bytecode verification on device
[16, 30]. In order to perform loading time verification, these mechanisms have to be
extended. One can consider delegating the verification to the card manager, that is to
OPEN (card manager on GP) or JCRE, for example, installer or JCVM interpreter.

Extension of the card entities can be done in different ways depending on trust as-
sumptions and approach chosen by smart card vendor. For example, GP implementation
may be proprietary or it can be formally proved and certified, so the vendor will not want
to touch it. It can be also the other way around, that Java Card implementation, or parts
of it, cannot be changed. Thus it is not possible to propose one single answer for the
question “which entity on the card will perform the verification process?”.

In this deliverable for on-device verification process we propose different approaches
for security mechanisms’ extension. These approaches assume different trust and avail-
ability assumptions and have their own pros and cons.

All the solutions assume to extend the loading mechanisms of the platform in a way
which ensures that verifications cannot be bypassed. Using full Java, or Java Card 3.0,
we can add our verification algorithm in a user defined classloader. Using Java Card
2.x, we can use the JCRE specific entity, namely, installer, that performs the installation
of the applications, resolves links with other applications and writes the CAP file con-
tents into the persistent memory. It seems natural to add the loading time verification
responsibilities to the installer. If Java Card implementation cannot be modified, we have
identified two ways for integrating our verification algorithms in GlobalPlatform that fulfill
these requirements. A rough solution is to modify the GlobalPlatform implementation,
and more precisely the LOAD command implementation. It therefore requires access to
the source code of the GlobalPlatform implementation to be deployed. As an alternative
to this invasive solution, GlobalPlatform includes a way to define Controlling Authorities in
charge of enforcing the security policy on all application code loaded into the card. Each
Controlling Authority gets a special security domain in which it can install its own veri-
fication processes called by the GlobalPlatform framework during the loading process.
These security domains need to have certain privileges in order to have access to loaded
applications and perform the verification process.

The improved loading mechanism can analyze the bytecode, going line by line, and
make a decision if this applet can be installed on the platform or not. If at some point it
will meet a potentially problematic instruction (e.g. an unauthorized call to a method of
another applet), the mechanism can stop the installation process and make a roll-back to
the previous card state (the contents of ROM memory cannot be erased, but all the links
to the unwanted applet data are removed from the registry [13]).

If the GlobalPlatform implementation cannot be modified, we can propose to modify
the Java Card installer, in order to include our verification algorithms. The platform load-
ing mechanism cannot be bypassed and, consequently, the improved one can indeed
guarantee that all the applets on the card will be verified.

Still it might happen, that it is not possible to include verification process into Java
Card installer, or the installer is not trusted. In this case we propose another approach.

Two components: ClaimChecker and PolicyChecker are added to the JCRE. This ar-
chitecture is provided in Figure 1.6. The ClaimChecker checks that the code of the new
applet is compliant with its contract (which is a formal specification of applet security-
relevant behavior). The PolicyChecker, instead, verifies, that the contract is compliant with
the security policy of the smart card system. Separation of these steps gives the platform

On device verification: compositional technique | version 2.9 | page 21 / 80

Figure 1.6: Security-by-Contract Architecture

more flexibility in implementation of the security policy and updates of it. We describe this
approach in more details in Chapter 3.

1.5.2 Lightweight Verification

Since the smart card has very restricted memory, a lot of interesting and important se-
curity properties, including non-interference, cannot be verified only by the card. In this
case, we propose to use a technique known as “Lightweight bytecode verification” that
has been developed in [38] for Java bytecode type verification. This technique, closely
related to proof-carrying code [35], is interesting because:

1. it provides the developers with tools, that help them to test the security of their
software unit before loading it on the embedded environment,

2. it allows an open system to verify code received from an untrusted source without
relying on a third party, even if it does not have enough power to compute the proof
itself.

Lightweight verification relies on the simple idea that it is easier to verify a result
already computed. It consists of two phases, as depicted in Figure 1.7:

Offboard phase (on the producer side) which is assumed to have access to infinite re-
sources (typically a personal computer compared to a small device), which com-
putes the type correctness and annotates the bytecode with some proof elements,

Onboard phase (on the consumer side) which, at loading time, verifies the proof anno-
tations obtained during the first phase. The annotations are embedded within the
code and verified. The verification operation is linear in the code size and uses
constant memory.

The first phase is performed by a prover, while a verifier embedded on the device
(again into JCRE or OPEN) certifies the second phase. This technique has been devel-
oped for type checking and it relies on the lattice structure of types and on unification
operations on this lattice. To be used in other contexts, the technique must be extended
and adapted to the desired properties.

On device verification: compositional technique | version 2.9 | page 22 / 80

Figure 1.7: Lightweight verification

1.6 Threat model

In this deliverable, we consider open systems supporting multiple applications from dif-
ferent providers and control flow and non-interference properties as desired properties.
Thus, threats are personified by malicious applications that try to be installed on the sys-
tem (or to be updated) and to break the information protection property in one of the
following forms:

• invoking services (directly or indirectly) that they are not allowed to invoke,

• relaying service invocations from A to a service of B when A is not allowed to call
this service (acting as a malicious proxy),

• stealing confidential information of other applications,

• obtaining (even with authorization) confidential information of an application A to
give the information to an application B that is not allowed to access information of
A.

All these threats can result either from a malicious application, or from a buggy appli-
cation. A buggy application can contain functional bugs, or for example be an application
that has been developed for another system with a different policy. In this case, the bug is
not in the application itself, but the policy is not compliant with the system. On the other
hand, a malicious application is an application that has been developed in order to attack
a system. In the general case, a malicious application can be an honest application that
has been tampered by an attacker after it has been sent by the stakeholder and before
it is loaded on the system: this cannot occur in our case since we are relying on the
GlobalPlatform mechanism that are tested by Work Package 7.

1.7 Related Works

Several methods have been proposed to strengthen the security of open multi-application
systems [46], but few are devoted to small devices such as mobile phones or smart cards.
The work of Huisman et al. [25, 26] is close to the control flow policies mentioned in this
deliverable. They have presented a formal framework and a tool set for compositional
verification of application interactions on a multi-application smart card. Their method was
based on construction of maximal applets, w.r.t structural safety properties, simulating all
the applets respecting these properties. Model checking techniques were then used to
check whether a composition of two applets A and B respects some behavioral safety
property. They proposed a compositional verification for control-flow-based properties for
Java Card applets. Their model was proved to be sound and complete for properties

On device verification: compositional technique | version 2.9 | page 23 / 80

expressed in simulation logic, and was implemented in a tool that accepts Java bytecode
as input. However, their proposal was not dedicated to be embedded on small devices,
and it lacks concrete means for ensuring deployment of verified applets only, especially
in a context where it is crucial that composition is done on-device. Barthe et al. [10]
had a similar approach to Huisman et al. that relies on temporal logic and lacks the
same features. Stack inspection mechanisms [11] could also be used to enforce control
flow policies but this monitoring approach cannot be concretely applied without significant
runtime speed penalty.

Concretely, few proposals have been made for static on-device verification of some
properties, especially security properties. Leroy [31] has exhibited problems encountered
to verify properties, like type-checking or stack under/over-flow, on-device on Java byte-
code. In fact this approach is analogous to the one described in this chapter: some
transformations done off-device help on-device verification at installation-time in order to
allow secure execution without runtime speed penalty of non-signed applets. Ghindici et
al. [21, 22] have followed a similar approach for secure information flow purposes. They
were relying on a sound and complete model to compositionally verify on-device proofs
(inspired by proof-carrying code methods [35]) computed off-device by the STAN tool and
then embedded in Java bytecode. As in Leroy’s work, this does not require code signing.

Avvenuti et al. in [8] have proposed a tool for off-card verification of Java bytecode
files, that might be later installed on the platform. Their method explored the multi-level
security policy model and the theory of abstract interpretation.

Girard in [23] have suggested to associate security levels (clearances) to applica-
tion attributes and methods, using traditional Bell/La Padula model. Bieber et al. have
adopted this approach in [12] and have proposed a technique based on model checking
for verification of actual information flows. The same approach was used by Schellhorn et
al. in [41] for their formal security model for operating systems of multi-application smart
cards.

Certification based-mechanisms were in fact widely used in small devices. Code sign-
ing is the simplest kind of such mechanisms. This process is used in several existing
devices such as smart cards (SIM cards, credit cards, etc.) but also iPhone, Android and
JavaME. Although code signing provides a simple but strong way to ensure both origin
and integrity of code, it is not designed to deal with application behaviors, especially their
interactions with each other.

Relying on code signing, many systems restrict authorized behaviors according to the
origin of the application, as it is for instance recommended by the Application Security
Framework of the Open Mobile Terminal Platform [4]. A first simple example comes from
the Android platform where an application can specify that its shared services must only
be invoked by code signed with the same signature.

Security-by-contract approaches [17, 18, 28] rely on code signing to bind application
code with some contracts. A contract is a set of relevant features of an application (e.g.,
use only HTTPS connections, use a shared service of applicationA, etc.) that can include
interactions with other applications and/or its host platform. Developers must generally
write their application contracts since features described in contracts are generally very
difficult to infer automatically from application code. In practice, contracts have to be
enforced on-device by additional mechanisms whose complexity depends on the expres-
siveness of supported features. Security-by-contract main principle is for instance used in
the Android platform where some irrevocable permissions can be granted at installation-
time: to use the camera, for example, an application needs to have the corresponding
permission which is granted if and only if it is mentioned in its manifest (contract) so that

On device verification: compositional technique | version 2.9 | page 24 / 80

the user can decide to grant it or not until application is uninstalled.
McDaniel et al. [36] have introduced more refined features in Android contracts along

with the SAINT framework to enforce them at run-time, which is not appropriate for con-
strained devices. This approach was far more sophisticated than the model of control
flow policies presented in this chapter, but suffers from a strong drawback, as it is also
the case for Kirin rules [19] for detecting malwares on Android: they are not sensitive to
collusion of applications and can thus be cheated. Since the Android platform is mostly
Java-based, our model could easily be instantiated and integrated in this platform to com-
plement these techniques and to provide the anti-collusion feature.

On device verification: compositional technique | version 2.9 | page 25 / 80

2. Notations

2.1 Mathematical notations

We denote by ℘(S) the powerset of S.

2.1.1 Functions

For a function f , we denote by dom(f) the domain of f , by f [x 7→ e] the function f ′ such
that f ′(y) = f(y) if y 6= x and f ′(x) = e, and by f|S the function f whose domain has
been restricted to S.

For a set of sets C and two functions f1 : A −→ C and f2 : B −→ C, f1 t f2 is defined
by:

f1 t f2 : A ∪B −→ C
x 7−→ f1(x) if x ∈ A and x 6∈ B
x 7−→ f2(x) if x ∈ B and x 6∈ A
x 7−→ f1(x) ∪ f2(x) if x ∈ A ∩B

2.1.2 Graphs

We consider finite directed graphs with edges labeled by elements of a set LE and ver-
tices labeled by elements of a set LV . A graph G is given by a triple (V,E, ς) where V is
its set of vertices, E ⊆ V × V × LE , its set of labeled edges, and ς is a mapping from V
to LV .

In the graph G = (V,E, ς), the edge from the vertex u to v, labeled by l is denoted
by (u, v, l) or u l→ v. We write adjG(u, l) to denote the set of adjacent vertices of u in
G, reached by an outgoing edge labeled by l. A vertex u is a leaf (respectively, a root)
if for any vertex v and label l, (u, v, l) 6∈ E (resp. (v, u, l) 6∈ E). Graphs may also have
unlabeled vertices (ς is undefined for all vertices). In this case, we simply write graphs as
a pair (V,E). Graphs may also have unlabeled edges, which are edges for which labeling
is irrelevant and can be ignored (we may assume that all edges are labeled with the same
dummy symbol from LE). In this case, edges are pairs of vertices (u, v).

A vertex v is reachable from u in a graph G if there is a path (a sequence of edges,
of length greater or equal to 0, leading) from u to v; we denote by ReachG(u) the set
of vertices reachable from u in G. We define Gbuc as the subgraph of G = (V,E) as
(ReachG(u), E ∩ (ReachG(u)× ReachG(u)× L, ς|ReachG(u))).

The union of two graphs is a partial operation defined only when their vertex labellings
are compatible; let G1 = (V1, E1, ς1) and G2 = (V2, E2, ς2). Then, the union G1 ∪ G2

is defined only if for all vertices v from V1 ∩ V2, either ς1(v) or ς2(v) is undefined, or
both are defined and ς1(v) = ς2(v). When G1 ∪ G2 is defined, it is equal to the graph
(V1 ∪ V2, E1 ∪E2, ς1∪2) where for all v in V1 r V2 (respectively in V2 r V1), ς1∪2(v) is equal

On device verification: compositional technique | version 2.9 | page 26 / 80

to ς1(v) (resp. to ς2(v)) and for all v in V1 ∩V2, ς1∪2(v) is equal to ς1(v) if ς2(v) is undefined
and to ς2(v) otherwise. Note that when considering graphs with unlabeled vertices, the
union of two of such graphs is always defined.

The graph inclusion (G1 ⊆ G2) is defined accordingly, that is, V1 ⊆ V2, E1 ⊆ E2 and
for all v in V1, either ς1(v) is undefined or ς1(v) = ς2(v).

For a graph G = (V,E, ς), the graph G[(u, l) 7→ v] agrees with G except that all the
edges of the form (u, u′, l) in E are replaced by a unique edge (u, v, l), and the graph
G[u 7→ l] denotes the graph (V,E, ς[u 7→ l]).

For a graph G = (V,E), V ′ ∈ V and V ′′ ⊆ V :

path(G,V ′, V ′′) = {v0v1 . . . vn ∈ V ∗ | v0 ∈ V ′, vn ∈ V ′′ ∧ ∀0 < i ≤ n, (vi−1, vi) ∈ E}.

A strongly connected component of a graph G = (V,E) is a subgraph G′ ⊆ G, G′ =
(V ′, E′), where V ′ is a maximal subset of V such that for each pair v1, v2 of vertices of V ′,
there exists a word v1vi0 . . . vinv2 in path(G,V ′, V ′) and each vik ∈ V ′ (and symmetrically
from v2 to v1).

2.2 Notations for programs

2.2.1 Object-oriented notations

In this deliverable, we consider on-device Java systems that support several applications.
As in any Java system, an application is implemented by a set of classes. We write
Classes the set of all classes names.

The services which we wish to control access to will be implemented as methods.
We will writeM the set of all methods names and meth(A) the set of methods of some
application A, that is to say the set of all the methods available for objects of its classes.
Thus, the set meth(A) contains fully qualified names of methods, namely elements of the
form A.C.m to denote the method m that is available for objects of class C in application
A.

Note that the method A.C.m might be defined and implemented in a super-class of
A.C – which might itself be in some other application – and simply inherited. Later on in
this work, the distinction must be made. In order to avoid confusion, we use the following
notations for inheritance.

The set Classes is equipped with an inheritance relation ≤; C1 ≤ C2 means that the
class C1 inherits from C2 or is C2 (and so we use C1 < C2 when C1 is a strict sub-class
of C2). The set M is also equipped with an inheritance relation, also written ≤. When
a class C1 of application A1 inherits from some class C2 in application A2 and redefines
a method m, we write A1.C1.m < A2.C2.m. We use ≤ whenever the method is either
inherited or redefined (i.e. basically whenever one class inherits from the other). So the
method A.C.m of meth(A) is actually defined in the class C of the application A when
there does not exist any A′.C ′.m such that A.C.m ≤ A′.C ′.m unless A.C.m < A′.C ′.m or
A.C = A′.C ′.

2.2.2 Application level definitions

Applications can make methods available through offered interfaces, in the sense of
shareable interfaces of Java Card or for example provided interfaces of the Corba Com-
ponent Model. Methods that do not belong to these interfaces can only be called inside
the application. Thus methods of the application are partitioned into two groups: offered

On device verification: compositional technique | version 2.9 | page 27 / 80

methods and internal methods. By analogy to the GlobalPlatform denomination, we con-
sider a set Domains of security domains of the system, even if it is not related to any
precise technology. By analogy to the GlobalPlatform denomination, we also use the
term “interface” in the specific meaning of Java Card shareable interfaces. Thus, for an
application A, shareable(A) denotes the subset of methods of meth(A) that are offered
in shareable interfaces.

2.2.3 Graphs of the programs

For a method m, Pm is its instruction list. We assume this list to be indexed from 0 to
|Pm| − 1, where |Pm| is its size. Hence, we denote by Pm[i] the i + 1-th bytecode of the
method m.

Let us first define the call graph of a set of methods.

Definition 2.2.1 (Call graph for a set of methods) Let M be a set of methods. A call
graph for M is a finite graph CG = (V,E, ς) with ς from V to M , E ⊆ V × V × N, such
that: for each v1 ∈ V , for each instruction Pς(v1)[i] = invoke 1m, for all m′ ≤ m that might
be called at runtime by this instruction, there exists a (v1, v2, i) ∈ E such that ς(v2) = m′.

Definition 2.2.2 (The context-insensitive call graph) The context-insensitive call graph
of a set of methods M is a call graph (V,E, ς) such that ς is a bijection.

Definition 2.2.3 (Intraprocedural control flow graph) The intraprocedural control flow
graph of a method m is an unlabeled graph CFm = (Pm, E) such that (i, i′) belongs to
E if either (1) i′ = i + 1 and Pm[i] is different from a return bytecode and from goto a,
or (2) i′ = a and Pm[i] is equal to goto a or to a comparison2 bytecode ifcmp a. Hence,
there is no edge going out of the vertex i if PC.m[i] is a return bytecode. An exit-point in
a control flow graph is a vertex without successor.

To deal with control flow properties, we have to be able to compute for a given method,
the set of methods it invokes directly of indirectly. The set is statically computed and thus
collects methods that are invoked on static types.

Definition 2.2.4 (Invoked methods) Let m be a method. Then the set of methods that
m invokes is the smallest set I(m) such that:

I(m) = Idirect(m) ∪ Iindirect(m)

with

• Idirect(m) = {m′ | ∃0 ≤ i < |Pm|, Pm[i] = invoke m′′,m′ ≤ m′′} is the set of
methods invoked in the bytecode of m,

• Iindirect(m) =
⋃
m′∈Idirect(m) I(m′),i.e. the set of methods (directly and indirectly)

invoked by methods directly invoked by m.

It is fairly easy to see that I(m) is exactly the set of all the methods that are reachable
(by 1 or more transitions) from m in the call graph of the system (Definition 2.2.2).

1Where invoke stands for any invocation bytecode like invokevirtual, invokestatic, . . .
2Or similar cases.

On device verification: compositional technique | version 2.9 | page 28 / 80

2.3 On-device system

2.3.1 Definition of the system

Definition 2.3.1 (On-device system) An on-device system S = (D,A,U , δ,P) is a tuple
where:

• D is a finite set of domains,

• A is a finite set of applications,

• U is the subset of A of applications with unsolved dependencies, i.e., applications
that cannot run because they need to use some services that are not available for
the moment, the applications of A \ U are said selectable, meaning that all their
requirements are met and they can be run,

• δ is the deployment function from A to D that defines where the applications are
deployed,

• P is the security policy of the system.

Remark. The function δ described in this definition can naturally be extended from ap-
plications to methods:

δ : M −→ D
A.C.m 7−→ δ(A)

2.3.2 Changes: addition of new elements in a system

A system S = (D,A,U , δ,P) can be updated by the installation of new applications:

install(A, d,S) = (D,A ∪ {A},U ′, δ[A 7→ d],P ′)

with P ′ (P v P ′) the new policy that takes into account the new application.
The application will become selectable as soon as all its dependencies will be re-

solved, this means that all the called methods must be methods of selectable applica-
tions, and that all the inherited classes must also be classes of selectable applications.
Thus,

U ′ = U if ∀A.C.m ∈MA,∀A′.C ′.m′ ∈ I(A.C.m), A′ ∈ A \ U
and ∀A.C.m ∈MA, (A.C ≤ A′.C ′)⇒ (A′ ∈ A \ U)

= U ∪ {A} otherwise

A system can also be updated by addition of a new domain:

add(d,S) = (D ∪ {d},A,U , δ,P).

At last a system can be updated by addition of new policy elements. This will be
described in the following chapters.

On device verification: compositional technique | version 2.9 | page 29 / 80

3. Direct Control Flow

In this chapter we consider a verification of a direct control flow for service invocations
of applets on Java Card. In the proposed model we do not consider GlobalPlatform
security domains hierarchy, but the model can be easily extended to include them. The
considered smart card system (platform) is based only on Java Card concepts and the
verification process is based on two new components added to JCRE. The mechanism
of verification implements Security-by-Contract approach, in which every application has
a contract, that is a formal specification of its security-relevant (in our case direct control
flow-relevant) behavior.

3.1 Introduction

To identify the requirements for an extension of the security mechanisms on Java Card
in presence of evolution we look at the GlobalPlatform specification [27]. In essence, GP
is a specification for the middleware, that can run on top of Java Card and provide more
security mechanisms for application management (for inter-application communications
GP relies on JCRE).

GlobalPlatform specification has explicit requirements for maintaining security and
functionality of the applications on the card during evolution:

• [27, p.92], Card and Application Management: Only code and data not referenced
by another entity on the card may be deleted.

• [27, p.24] Trusted Framework security requirements: Each Trusted Framework on
the card shall check the application access rules of the inter-acting Applications
according to their respective privileges;

The security mechanisms on the card have to support these requirements and maintain
security and functionality of the applications.

The requirement for deletion of only not referenced entities, however, can be overrid-
den for services on Java card, because Java Card specification allows the calls to the
services to be checked only at run-time. Still, this requirement shows, that the applica-
tions shall be functional and their functionality can include services provided by another
applications. Thus, before deleting an application, we need to check if some other ap-
plications rely on the services it provides. For example, for electronic purse – transport
application smart card, transport applet is useless without the payment application. But,
instead, for bank – mileage applets tandem, if the bank applet will be removed from the
card, the mileage application will still work perfectly, because its core functionality is to
count miles during check-ins in the airports, and accumulating miles for banking transac-
tions is a “bonus” functionality. Java Card technology allows applets to be functional even
if they have embedded calls to the services of other applets and these services are not

On device verification: compositional technique | version 2.9 | page 30 / 80

provided on the card. But some services, as we have shown, can actually be necessary
and we are capturing this property in our model.

Example 1 As an example we can consider the multi-application smart card described
in the Deliverable 1.1 [7], it is implemented according to the specifications of Java Card
and GP. We assume two security domains on the platform: Bank and Transport with
applications EMV@Bank, ePurse@Bank and jT icket@Transport. The architecture is
provided in Figure 1.3. Application EMV has one service transaction, ePurse has one
service payment, jT icket has no services.

Application jT icket provides to the card holder certain number of tickets for public
transportation. Tickets can be bought using ePurse, and the act of ticket purchasing
requires the invocation of service ePurse.payment by jT icket.

The Bank security domain owner allows data exchanges between EMV@Bank and
ePurse@Bank, and between ePurse@Bank and jT icket@Transport, but not between
EMV@Bank and jT icket@Transport. On the other hand, Transport owner not only
allows data exchange between ePurse@Bank and jT icket@Transport, but she actually
needs this exchange, otherwise her application is useless.

The basic idea of our proposal is that we will add a contractual component (con-
tract) to each application detailing its security policies and its claim on the usages of
other resources on the platform (the latter can be also extracted from the bytecode). Two
new components of JCRE, as illustrated in Figure 1.6, namely, the ClaimChecker and the
PolicyChecker will perform correspondingly the comparison of the applets contract with its
bytecode and the comparison of the contract with the smart card platform security policy,
that will is related to direct control flow. Our extension to Java Card security mecha-
nisms can help both stakeholders in the example 1 to make sure that their security and
functionality requirements are met when changes occur.

Example 2 Due to a termination of the agreement, the Bank security domain may up-
date the policy forbidding access to the Transport owner. In the new security architecture
this change is much more easier to implement than before, since the security policy is no
longer embedded in the application code, but is provided separately in the PolicyChecker.

Further details on architecture are provided in Section 3.5.

3.2 Formal Security Model

One can provide various formal security models for specification of security-relevant and
functionality-relevant behavior of the applications and for the platform security policy. We
present in this deliverable a formal model based on the shareable interfaces of the appli-
cations.

We now introduce a definition of a smart card platform, that is a similar concept of Def-
inition 2.3.1 of the on-device system. As well we will further introduce a notion of evolved
(updated) platform that is similar to the notion of update of a system of the Sec. 2.3.2

Definition 3.2.1 (Platform) Platform Θ is a tuple 〈∆A,∆S ,A, shareable(), invoke(),
sec.rules(), func.rules()〉, where ∆A is a domain of applications; ∆S is a domain of ser-
vices; A ⊆ ∆A is a set of selectable applications installed (deployed) on the platform;
shareable(), invoke() : ∆A → ℘(∆S) are association function for the services on the plat-
form; sec.rules() : ∆A ×∆S → ℘(∆A) and func.rules() : ∆A → ∆S define security policy
of the applications.

On device verification: compositional technique | version 2.9 | page 31 / 80

In order to simplify the notations, we use the application as an index of the function
instead of being an argument. So we write shareableA instead of shareable(A); invokeA in-
stead of invoke(A); sec.rulesA(s) instead of sec.rules(A, s); func.rulesA instead of func.rules(A).
The set of all services installed on the platform will be denoted as S =

⋃
A∈A

shareableA.

The last two functions of the platform, sec.rules() and func.rules, define respectively the
security policy and the functionality policy of each application. For every application A ∈
A sec.rules(A, s) = sec.rulesA(s) is a mapping, that defines for each service of application
A which other applications on the platform are authorized to call it. The functional rule
func.rules(A) = func.rulesA specify the set of services on the platform that A needs in order
to be functional. If some service, that is declared in func.rulesA is absent on the platform,
the firewall will return null, thus making A crash or malfunction.

We assume that shareableA∩ shareableB = ∅ for all A,B ∈ ∆A : A 6= B. Also sec.rules()
is a partial function, so that sec.rules(A, s) is only defined if s ∈ shareable(A). In other words
the security policy of an application can only talk about the application’s own services.
Also we assume that shareableA ∩ func.rulesA = ∅ for all A ∈ A.

We denote applications already installed on the platform as A or Ai (elements of A)
and the application that is affected by a change (or new applet being installed) as B.
We use notation A.s for service s of application A. Also we assume that application and
service names are unique.

Let us now define an evolution of the platform, for the types of changes we have
chosen (see Section 1.1 for details):

Definition 3.2.2 (Evolved Platform) Let B be an application affected by change, an
evolved platform Θ′ from a platform Θ = 〈∆A,∆S ,A, shareable(), invoke(),
sec.rules(), func.rules()〉 is defined as follows:

1. Addition of a new application B: A′= A∪B.

2. Update of an installed application B ∈ A. This update can be expressed as a
sequence of simpler updates. For all applications A ∈ A, A 6= B holds:

(a) Addition of a service s to shareableB: shareable′A = shareableA and shareable′B =
shareableB ∪ {s};

(b) Addition of a service s to invokeB: invoke′A = invokeA and invoke′B = invokeB

∪{s};
(c) Addition of an access authorization to service s for application C by B:

sec.rules′A() = sec.rulesA() and sec.rules′B() = sec.rulesB() ∪ {C};
(d) Addition of a necessary service s to func.rulesB: func.rules′A = func.rulesA and

func.rules′B = func.rulesB ∪ {s};

Unless specified above, other components of the platform are unchanged.

Our goal is to keep the platform secure after every update and to this extent we
need to define the notion of executions of applications on the platform. We approximate
executions of applications as sequences of service invocations. So we denote by A :: s
an invocation of service s by application A, where s is a service of A. A :: B.t is an
invocation of service B.t by application A. We also assume that in each single moment
only one application is active and combine the traces of all applications synchronously.
We use σ for an execution’s trace and σ1 ·σ2 for a concatenation of executions σ1 and σ2.

On device verification: compositional technique | version 2.9 | page 32 / 80

Definition 3.2.3 (Possible executions on the platform) Set ΣΘ of all possible execu-
tions of Θ is constructed as follows:

• Axiom ε ∈ ΣΘ, where ε is an empty trace.

• Rule 1 σ∈ΣΘ, A∈A,s∈shareableA
σ·A::s∈ΣΘ

• Rule 2 σ∈ΣΘ, A,B∈A, B.s∈invokeA∩shareableB
σ·A::B.s·B::s∈ΣΘ

The intuitive meaning is that if A is an applet on the platform Θ, then it can become an
active applet and invoke its service s ∈ shareableA. If there is a service B.s such that some
application A invokes this service during its work, then a sequence ‘A calls B.s’ – ‘B.s is
invoked’ can appear in the execution of Θ. We can now define the security properties to
be preserved across updates.

Definition 3.2.4 (Secure Platform) Let Θ be a platform, then for all applications A, B ∈
A and all services s ∈ S

Security in traces : if B /∈ sec.rulesA(s), then for all executions σ, σ′ an execution σ ·B ::
A.s ·A :: s · σ′ /∈ ΣΘ.

Functionality in traces : if B.s ∈ func.rulesA, then exists an execution σ · A :: B.s · B ::
s ∈ ΣΘ.

Θ is secure if security and functionality are maintained across updates.

3.3 Specifications of Contract and Components

The contract in a S×C approach for mobile platforms is a specification of an application
that will help honest application providers to describe what their application is going to
do and the platform owner to check if these applications are not malicious [15]. In Figure
1.1 the contract (specification) provided by application developer should be checked for
compliance against the application code, so it seems natural to extract it from the code,
like in [22], or use proof-carrying-code techniques [35]. Here, we need also to give the
application owners the possibility to impose restrictions on the callers of their services.
This information cannot be extracted from/compared to the code, since it is not about the
application itself but about other external applications. So we extend the S×C definition
from [17] by dividing the contract ContractA of application A into two parts:

• ClaimA describes the actual behavior of application A. ClaimA contains two parts:
the services that are called by A and the published services of A, essentially this
is an information that can be automatically extracted from the code. For instance,
if one has A’s source code, then the list of called services can be comprised from
getShareableInterfaceObject methods, and the list of A’s services – from the methods
that implement Shareable interface.

• AppPolicyA is declared by application providers, security domain owner or control-
ling authority about the desirable behavior of other applications on the platform w.r.t.
this application.

An update of some application in S×C approach will be reflected in the Claim update and
(or) AppPolicy update.

On device verification: compositional technique | version 2.9 | page 33 / 80

Definition 3.3.1 (Contract) For application A its ContractA is a pair 〈ClaimA,
AppPolicyA〉, where

• ClaimA = 〈ProvidesA,CallsA〉, and ProvidesA,CallsA ∈ ℘(S);

• AppPolicyA = 〈sec.rulesA, func.rulesA〉, and sec.rulesA : S → ℘(A), func.rulesA ∈ ℘(S).

We assume dom(sec.rulesA) ⊆ ProvidesA and func.rulesA ⊆ CallsA.

ProvidesA is a declared set of services of application A and CallsA is a declared set of
services of another applets that A calls into its code. The security and functional rules
are now instantiated in the AppPolicy of each application i.e. the policy of the platform is
broken down to each individual application and then written into its Contract.

ContractA provided according to Definition 3.3.1 is well-formed. We can expect that
there might be some malicious applications with not well-formed contracts, where they
could try to declare, for example, sec.rules for services, that are provided by other applica-
tions. So the verification process normally has to include a check that provided Contract
is well-formed.

We now enlarge the generic platform security policy given as a set of rules on the
platform Θ, adding to the policy also Claim of all applications on the Θ.

Definition 3.3.2 (Platform Security Policy) Security policy of the platform P consists of
the contracts of all the applications A on the platform: P=

⋃
A∈A

ContractA

Thus policy P is compositional and it is jointly defined by all the stakeholders. Any
accepted update of the platform Θ will influence P.

Now we will specify the behavior of the ClaimChecker and the PolicyChecker for various
types of updates that we consider in this deliverable.

Definition 3.3.3 (Claim Checker) A ClaimChecker algorithm for a new (updated) applica-
tion B is a PTIME algorithm that returns true iff the conditions below are true:

1. shareableB ⊆ ProvidesB.

2. invokeB ⊆ CallsB.

ClaimChecker is precise if shareableB=ProvidesB and invokeB=CallsB.

Intuitively, the ClaimChecker has to check that application code and Claim are compliant:
all services that B has are declared in ProvidesB and all services that B actually invokes
are declared in CallsB. If we want to capture functional dependencies we have to require
the ClaimChecker to be precise.

We do not show in this deliverable how to construct the ClaimChecker. One can use,
for example, the techniques for parsing the bytecode on device that are provided in Chap-
ter 4.

Definition 3.3.4 (Static Policy Checker) A StaticPolicyChecker algorithm for platform Θ
and changed application B is a PTIME algorithm, that returns true iff for all applications
A,B ∈ A and services s ∈ S

• Security on contract level: if B.s ∈ CallsA then A ∈ sec.rulesB(s).

• Functionality on contract level: if B.s ∈ func.rulesA then s ∈ ProvidesB.

On device verification: compositional technique | version 2.9 | page 34 / 80

Intuitively, the StaticPolicyChecker checks that AppPolicyA for every application A ∈ A is
satisfied on the platform.

We can now define an optimized checker that works for verification of an update for
an application B. The update is reflected in the ContractB if there if a change in the set of
called or provided services, or there is a change in security or functional rules. Such an
update can be broken down into atomic updates, that correspond the targeted evolutions
of the platform.

Definition 3.3.5 (Optimized Contract-Policy Compliance Checker (Policy Checker))
An Optimized PolicyChecker (or just PolicyChecker) is a PTIME algorithm for certification
of change in the application B, that returns true iff the conditions below are true for all
applications A ∈ A on the platform:

1. Installation of a new applet B on the platform.

• B ∈ sec.rulesA(ProvidesA ∩ CallsB);

• func.rulesB ⊆
⋃

A∈A
ProvidesA;

• A ∈ sec.rulesB(ProvidesB ∩ CallsA);

2. An update of some application B ∈ A.

(a) Addition of a service s to ProvidesB: A ∈ sec.rulesB(s ∩ CallsA);

(b) Addition of a service s to CallsB: B ∈ sec.rulesA(ProvidesA ∩ s);

(c) Addition of an authorization rule for some application C to a service s of B to
sec.rulesB: return true;

(d) Addition of a service s to func.rulesB: s ∈
⋃
A∈A

ProvidesA

The PolicyChecker rejects any change if security or functionality can be broken.
After an accepted change, when both the ClaimChecker and the PolicyChecker returned

true, the policy P has to be adjusted. The adjustment is defined accordingly to what
the PolicyChecker did. For example, for installation of a new application B it is P ′= P ∪
ContractB.

3.3.1 Different approaches for accepting updates

Another benefit of separating the ClaimChecker and the PolicyChecker from any component
of JCRE and from each other is more flexibility in adopting various strategies for accepting
updates. The PolicyChecker we describe in this deliverable has the strategy to maintain
stable security and functionality on the smart card platform and to reject all potentially
threatening updates (principle “already installed applets have more privileges than a new
one”). So if an update of some applet B can potentially break security (for example, B
wants to add a call to some applet A, and this call is not authorized by A), the card will
reject this update.

A different approach might assume a hierarchy of applications so that a change in a
“more important” application can still go ahead even if less important applications break
down. This is a reasonable strategy for current smart card business model, where the
card issuer is always more privileged than any other stakeholder on the card. Conse-
quently, the card issuer wants always to be able to update her applets, even though
they might break security or functionality of other applets on the card. In this case, the

On device verification: compositional technique | version 2.9 | page 35 / 80

PolicyChecker has to apply a different algorithm, in which it will identify the applications
that cause the problem and make them unselectable (unavailable to be executed). This
may start a process of cascade deselection of applications on the platform, but this is a
price of maintaining security and functionality.

We also point here to potential problems for resolving the conflicts between applica-
tions. For example, the applet jT icket from our running example 1 is preventing the
application ePurse of another stakeholder from being removed from the card (if the
PolicyChecker adopts the strategy from Definition 3.3.5), essentially, locking it. Conse-
quently, this is a conflict of interests and the card (or at least the business model) should
have a way to resolve such conflicts. As a solution, the PolicyChecker can have a special
algorithm with a support for resolution of such conflicts, again searching for the applet to
blame in the problem and evaluating both parties’ positions, with a priority given to the
owner of the conflicted service. For example, in the aforementioned case of jT icket and
ePurse, the ePurse is allowed to be removed, because its owner can take decisions on
her services, and the jT icket is made unselectable, since it will not be functional anyway.

3.4 Validation of the Security-by-Contract Approach

We now state that our approach to verification of updates does actually deliver the right
security guarantees.

Lemma 3.4.1 If ∃σ ·B :: A.s ·A :: s ∈ ΣΘ, then s ∈ shareableA ∩ invokeB.

Proof. The only possible rule to obtain such an execution is Rule 2 of Definition 3.2.3. By
condition of this rule, s ∈ shareableA ∩ invokeB.

Theorem 3.4.2 ClaimChecker and StaticPolicyChecker are sound and they returned true
for ∀A ∈ A, then Θ is secure.

Proof. Platform Θ is secure if security and functionality in traces are maintained. If the
StaticPolicyChecker is sound and returned true, then security and functionality on contract
level are maintained. We need to proof that security and functionality on contract level
imply security and functionality in traces.
Proof by contradiction. Let security on contract level holds, but security in traces is not
maintained. Then ∃A ∈ A, ∃s ∈ shareableA,∃B ∈ A such that B /∈ sec.rulesA(s) AND there
exists σ · B :: A.s · A :: s ∈ ΣΘ. Then by Lemma 3.4.1 A.s ∈ invokeB. According to
definition of the ClaimChecker, the previous fact implies, that ∃A,B ∈ A, A.s ∈ S A.s ∈
ProvidesAandA.s ∈ CallsB. Application B /∈ sec.rulesAA.s by our assumption, but it is a
contradiction with the definition of security on contract level, that is maintained on the
platform.
Let functionality on contract level holds, but functionality in traces is broken. Then ∃A,B ∈
A,∃A.s ∈ func.rulesB such that ∀σ execution σ · B :: A.s · A :: s /∈ ΣΘ. Analogously to
the proof of security in traces, we can make a conclusion that either A.s /∈ invokeB or
s /∈ shareableA. According to the definitions of application Contract and the ClaimChecker,
func.rulesB ⊆ CallsB = invokeB, under assumption that the ClaimChecker is precise, and,
consequently, A.s ∈ invokeB. Since functionality on contract level is maintained, it implies
(from the fact A.s ∈ func.rulesB) that A.s ∈ ProvidesA. Hence, under assumption that the
ClaimChecker is precise, s ∈ shareableA.

On device verification: compositional technique | version 2.9 | page 36 / 80

Theorem 3.4.3 If Θ is secure, ClaimChecker and PolicyChecker are sound and they re-
turned true, then the evolved platform Θ′ is secure after targeted types of changes.

Proof. If the StaticPolicyChecker returns true on the evolved platform Θ′, then by the
Theorem 3.4.2 Θ′ is secure.
In order to show that the StaticPolicyChecker returns true on Θ′, we have to reason by
cases for all possible Θ′ described in Definition 3.2.2. For each type of evolved platform
and since Θ was secure before the change, it is easy to show that the StaticPolicyChecker
run on Θ′ is equivalent to the PolicyChecker run, performed the case correspondingly the
type of change occurred. Thus if the PolicyChecker returned true, the StaticPolicyChecker
will return true on Θ′.

If we look at Figure 1.1, Theorem 3.4.2 tells us about the initial status of the card. The
soundness of the ClaimChecker is needed for a successful first step. The PolicyChecker’s
soundness is required for the second transition. The Java Card firewall reliability assump-
tion (blocking non-shareable interface calls) is necessary as an underlying assumption to
show that the two checks are sufficient. We do not deal with the problem of inlining the
policy, because it is unfeasible on the card.

3.5 Security-by-Contract Architecture

Let us discuss now more precise workflow for an extension of the Java Card security
mechanisms that we have proposed in this chapter. The architecture extends the existing
Java smart card architecture with two additional components: the ClaimChecker and the
PolicyChecker (see Figure 1.6).

When a new applet has to be loaded on the card, the terminal sends the CAP file of the
applet to the installer. The CAP file contains the binary code of the applet and its Contract.
When the installer receives the CAP file of the new applet, it saves the file in the card’s
memory. The installer might also perform an optional signature check for verification of
the source of an update. If the signature is valid, then the ClaimChecker extracts the
set of claims ClaimA from the contract, and verifies that the claims are compliant with the
applet’s code. If this is the case (the ClaimChecker returned true), the PolicyChecker checks
the applet’s contract against the platform policy P that is stored in the PolicyChecker. If
the applet’s contract complies with the platform policy (the PolicyChecker returned true),
then the PolicyChecker updates the security policy and the installer creates an instance
of the applet and makes it selectable. Otherwise, the applet is rejected and, if possible,
erased from the memory. This is the workflow our formal model supports. In the S×C-
enhanced security architecture, when a method of the applet is called by another applet,
the Java firewall simply checks that the method belongs to the shareable interface of the
applet and does not perform run-time checks of the applet’s privileges for an access to
the services.

In general, it is possible to implement the ClaimChecker and the PolicyChecker compo-
nents as off-card entities, using some Trusted Third Party (TTP) computational capabili-
ties, though it will require reconsideration of the approach as a lightweight verification. But
it may be interesting, for example, for a complicated specification of application behavior
(contract), if the PolicyChecker will be implemented on the side of the issuer or mobile
phone platform (for SIM applications), and the JCRE will provide a cryptographic support
for communications with TTP. Another solution is to replace the ClaimChecker with a digital
signature verification for some trusted application providers. In this case signature of an
applet has a concrete semantics, represented as an application contract.

On device verification: compositional technique | version 2.9 | page 37 / 80

B.m

Local
«control flow»

C.m A.m

Status A

Status C

Status B

{policy=A.m,B.m}

Figure 3.1: Example of a diagram annotated with << control flow >>

In a full industrial setting it could be possible to incorporate the components into Java
Card run-time environment. Such approach will increase the speed of verification.

3.6 Link with WP4 Notation

In model-driven security engineering, the main goal is to detect unwanted behavior of
a system before its actual implementation. Prudent secure engineering techniques to
achieve this are encapsulated for example in the UML security extension UMLsec [29]. To
deal with evolution, WP4 has introduced a further extension to UMLsec called UMLseCh
[42]. The techniques described in this chapter to deal with direct control flow can be
complemented at design time by means of the stereotype << control flow >> and the
UMLseCh stereotypes to represent evolution.

The stereotype << control flow >> can be applied to a package containing a state-
chart diagram. It has an attached tag {policy = list of methods}, specifying a policy for
the application described within the diagram. Semantically, << control flow >> checks
if there are transitions within states where a method not contained in {policy} is called. In
this case, the diagram fails the direct control flow requirement. The {policy} for an appli-
cation B can be represented in terms of Contract: it is exactly the set

⋃
A∈A

sec.rules−1
A (B).

The transitions within the states have to correspond the set of actually called services
invokeB.

For example, in Figure 3.1, there is an example of a diagram violating the require-
ments of << control flow >>, since the application considered is only allowed to call
services A.m and B.m, and it calls C.m. In this figure Status A, Status B and Status C
are some statuses of the modeled application and A.m, B.m, C.m are some services of
another applications on the platform.

In the case of having a policy respecting UML diagram representing the behavior of
the application, this proof obligation for the implementation can be checked using the on-
device verification techniques presented in this chapter. WP4 plans to provide verification
results at the UML model level for the preservation of << control flow >> under evolu-
tion by M24. The evolution stereotypes included in the UMLseCh extension to UMLsec
allow to specify changes in the system and in the policy. The expected result is that
given a model respecting the << control flow >> semantics and the evolution delta as
specified in the UMLseCh stereotypes, a decision about the security preservation of the
evolved model can be made without re-running the verification from scratch.

On device verification: compositional technique | version 2.9 | page 38 / 80

The approaches for on-device direct control flow verification we suggest in this chap-
ter and the model level evolution verification that will be provided in WP4 for the <<
control flow >> stereotype are complimentary. At design time with the help of UMLseCh
models one can verify that the model of an application respects certain (also evolving)
policies. However, the ClaimChecker and the PolicyChecker together make sure, that the
application’s code indeed respects these policies.

3.7 Conclusions

In this chapter we have proposed an extension of the Java Card security mechanisms for
open multi-application smart cards that makes it possible to perform verification of direct
control flow security property on the card. This extension adds two components to the
JCRE, the ClaimChecker and the PolicyChecker. In a nutshell, all applications are arriving
with specifications of their behavior and their requirements on other applications on the
platform. These requirements merged together create platform security policy. The card
can verify autonomously whether they are acceptable and then either reject or accept the
change.

We have shown that the S×C approach can be used in a dynamic environment when
applications come and go and the security policy can be changed, and it can help solving
security and functionality challenges. The direct control flow properties were specified in
terms of services used and provided by applications on the platform.

The framework we have proposed can check the absence of non-authorized accesses
to the application services (direct control flow) and the functional stability of the applica-
tions on the card in terms of necessary services provided by other applets. Another
contribution of the framework is the flexibility in specification and updates of the platform
security policy. In today’s security model access control is embedded into the application
code and it is very costly to update it. Placing it separately from the code allows the
stakeholders to deploy the updates more easily.

The S×C approach for on-device verification can easily be extended for removal of
applications or decremental updates (removal of services) and it will make a part of the
Deliverable 6.4 that is due at M24.

On device verification: compositional technique | version 2.9 | page 39 / 80

4. Transitive Control Flow

Preliminary remark This chapter has been submitted for publication in a conference.
The content of the article has been only slightly modified in order to use uniform notations
across the report and to merge related works.

In this chapter, we tackle the issue of controlling application interactions including
collusion in Java-based systems running on open, constrained devices such as smart
cards or mobile phones. We present a model specially designed to be embedded in con-
strained devices to verify at loading time that interactions between applications abide by
the security policies of each involved application without resulting in run-time computa-
tion overheads; this models deal with application (un)installations and policy changes in
an incremental fashion. We propose some algorithms, fit to be embedded, to ensure the
security of a system is preserved along those updates and we show how this framework
can be instantiated in GlobalPlatform with Java Card platform, widely used by smart card
manufacturers to illustrate the security enhancements provided by our framework on a
multi-application use case. The example used as support follows the requirements of the
POPS use case as described in the deliverable D1.1, but is not directly the POPS use
case, the basic idea has been enriched, keeping all its key elements but focusing on the
very topic of the chapter.

4.1 Introduction

Ubiquitous devices such as mobile phones and smart cards tend to be multi-application
devices and to support post–issuance installation of applications. Applications are also
evolving to take advantages of these new features: they are shifting from standalone de-
signs to a collaborative model where they provide services to other applications. This
new shape of ubiquitous devices causes major security concerns for end-users and ap-
plications vendors.

In a multi-application environment, the system generally provides some basic mech-
anisms to application developers for controlling access to services they provide to other
applications. In open contexts, i.e., when some applications can be added (or changed)
to the system post issuance, access control mechanisms are however very limited and
insufficient to fulfill requirements of international security agreements such as Common
Criteria Recognition Agreement [1]. Actually, formal methods are required to reach the
highest certification levels of these agreements.

Formal methods, that are currently applied to verify some security properties (confi-
dentiality, integrity, application interactions, safety, etc.), have been developed to analyze
a finite set of applications known before issuance of the device. These methods are not
appropriate in open contexts even if they can be embedded on-device. Indeed it could
lead to useless resource consumption simply because security models and algorithms
have not been tuned for this purpose.

On device verification: compositional technique | version 2.9 | page 40 / 80

In this chapter, we focus on the design of on-device verification of absence of unde-
sired control flow between applications. For open multi-application devices, it is manda-
tory to verify that each new incoming application will not create some undesirable control
flow paths because of application-specific restrictions. We describe a model and some
efficient algorithms to enforce control flow policies for open multi-application Java-based
systems. The model is designed to avoid collusion between applications to exploit ser-
vices provided by other applications. The main originality of this model is to define an
incremental verification process at installation-time with few memory requirements and
computation overheads in order to be fully embeddable in constrained devices.

We first introduce the model of application interactions we use to formally define con-
trol flow policies (Section 4.2), and algorithms for efficient verification of these policies
on-device at installation time without any third party (Section 4.3). We then describe a
concrete integration of our model in Java-based smart cards (Section 4.4), and illustrate
the security enhancements achieved on such devices with a concrete use case (Sec-
tion 4.5).

4.2 Model for control of service calls between applications

We first give a high level abstraction of an open multi-application Java-based system.
This model is not directly related to any specific technology and is abstract enough to be
adapted to any Java environment, as it is illustrated later in this chapter.

Informally, we consider a system composed of several domains. A domain can harbor
applications, and it is assumed that access to domains is controlled by the underlying
system. An application is a bunch of classes that can provide some shared services.
Basically, a shared service is just a method. In the system, applications residing in dif-
ferent domains can only call each other through their shared services. An application
provides, for each of its shared services, the exhaustive list of all the domains from which
this service might be used. The exhaustiveness of this list is here to be understood even
up to relays: in cases where two applications act in collusion, we might see a situation
in which an application Bad wants to call a service S but resides in some domain from
which calling S is prohibited; in order to do so, it might use some application Rel, be it
renegade or simply buggy, that resides in some domain S grants access to, to relay calls
from Bad.

To sum up, the model we propose here to secure calls of shared services is based on
those domains which simply define a partition of applications such that:

• classes of applications that belong to the same domain can share information and
call each other’s methods,

• while communications between classes of applications that belong to different do-
mains must be explicitly allowed for the code to be permitted to run.

4.2.1 Systems and security policies

A security policy for a system (or a subsystem) is a set of security rules in which every
method of the system (resp. the subsystem) is given exactly one security rule and where
security rules define from which domains a given method can be called.

Definition 4.2.1 (Security policy) LetM be a set of methods andD be a set of domains.
A security policy for the set of methods is

p = (M,D, rules),

On device verification: compositional technique | version 2.9 | page 41 / 80

where rules is a mapping rules : M −→ ℘(D) ∪ {>}, where > stands for “any domain”.

The value > is needed to allow evolutions of the system after deployment: the differ-
ence between > and D is that D is the set of all the known domains. When the system
evolves, some new domains might be introduced from which some previously deployed
methods might want to accept calls without any extra update of its security policy. > con-
veys that meaning of all domains, even yet-unknown ones.

The security concerns of the system are expressed in terms of authorizations to in-
voke methods of the system.

Definition 4.2.2 (Security policy of the system) The security policy of the system, de-
noted by P is a security policy (M,D, rules).

4.2.2 Semantics of the security policy

We build on those definitions of security policies in order to define formally the security
property we want to assert on systems. Basically, in secure systems, an application in
some domain d will be enabled to invoke indirectly (i.e. trigger an invoke from a method
in some other domain) or directly only services explicitly expecting calls from d. The
semantics must take into account dynamic dispatch, where the method of any sub-class
of the static type can be actually called.

Definition 4.2.3 (The context-insensitive call graph of a system) The
context-insensitive call graph of a system S = (D,A,U , δ,P) is denoted by CG(S) and is
the context-insensitive call graph of the set of methods of the system.

Definition 4.2.4 (Secure system) A system S = (D,A,U , δ,P) is secure if and only if
for all (A1.C1.m1, A2.C2.m2) ∈M×M, there exists a path from A1.C1.m1 to A2.C2.m2 in
CG(S) only if δ(A1.C1.m1) ∈ rules(A2.C2.m2).

4.2.3 Generic security policies

When implementing an application A, the programmer has to decide which methods are
critical and must therefore get a security policy rule. But the programmer may not be
aware of the precise configuration on which the application will be deployed, in particular
we do not want the set of domains to be fixed once and for all. So we allow programmers
to define, for an application A, a set of security levels LA, that represents relevant security
access levels for the application like public, applications of the same domain, applications
of commercial partners, etc. The policy PA defines the access rules to the methods
of the application, i.e., the set of security levels from which this method can be called:
PA = (MA,LA, rulesA).

To impose as little constraints as possible on the set of levels LA, the only requirement
is the availability of an instantiating function mapping those levels to actual domains when
the application is deployed:

instA,d,(D,A,U ,δ,P) : LA −→ ℘(D)

As said at the beginning of this section, the intuition is to always allow communications
inside one security domain. To that end, we require the images by instA,d,S to always
include d1.

1So the co-domain of the mapping really is ℘(D) \ ℘(D \ {d}).

On device verification: compositional technique | version 2.9 | page 42 / 80

That mapping is further extended to:

instA,d,(D,A,U ,δ,P) : ℘(LA) ∪ {>} −→ ℘(D) ∪ {>}
L ∈ ℘(LA) 7−→

⋃
l∈L instA,d,(D,A,U ,δ,P)(l)

> 7−→ >

Then the policy of A deployed on S = (D,A,U , δ,P) is P iA = (MA,D, instA,d,S ◦ rulesA).

Remark. The rules of the policy are a mapping from all the methods to the security
levels. Obviously, giving a security policy for each method of the application can become
a boring task. Thus it is possible to provide a tool that allows the programmer to give
policies for methods of shareable interfaces and that computes the closure of the least
relation rulesA such that rulesA(m) ⊆ rulesA(m′) whenever m invokes m′.

4.3 On-device algorithms

We devise now efficient embeddable algorithms to ensure that the system stays secure
along its evolutions.

4.3.1 Addition of a new application

When a new application A with the instantiated policy P iA = (MA,D, instA,d,S ◦ rulesA)
is loaded on the device in some domain d, the device has to verify that A respects the
policy of the system and, if the application successfully passes the verification, to update
the system S = (D,A,U , δ,P).

To accept the application A, we verify it class by class, method by method, following
the standard Java loading mechanism. Thus, for each method m, we have to check that:

1. m invokes only methods that grant access to applications in domain d,

2. every method of other applications that asks access to m resides in some domain
from which the rules for m grant access.

Let us recall that Idirect(m) is the set of methods that m directly invokes, namely the
m′ such that an instruction invoke m′ appears in the code of m. To perform the verifica-
tion, we have to be able to take into account, for a given method, the set of methods it
invokes directly of indirectly (that is I(m)). So all the rules and the algorithms we propose
hereafter pay special attention to preserve the transitivity of the property they ensure.

Definition 4.3.1 (On-device method verification) A method m of a class C of an appli-
cation A with a policy PA = (MA,LA, rulesA) passes the verification to be loaded on the
system S in the domain d if:

1. ∀A′.C ′.m′ ∈ Idirect(A.C.m), {d} ∪ instA,d,S ◦ rulesA(A.C.m) ⊆ rules(A′.C ′.m′)

2. ∀A′.C ′.m′, A.C.m ∈ Idirect(A′.C ′.m′)⇒ {δ(A′.C ′.m′)} ∪ rules(A′.C ′.m′) ⊆
instA,d,S ◦ rulesA(A.C.m)

3. ∀A′.C ′, A.C.m ≤ A′.C ′.m⇒ rules(A′.C ′.m) ⊆ instA,d,S ◦ rulesA(A.C.m)

Those rules are dictated by the requirement of consistency of the system:

On device verification: compositional technique | version 2.9 | page 43 / 80

• Rules 1 ensures that all the methods invoked by the incoming method grant access
to the domain in which the incoming application is being installed and to all the
domains from which the incoming method will be expecting calls,

• Rules 2 ensures that all the methods calling the incoming method are in domains
from which this is explicitly permitted,

• Rules 3 ensures that, when the incoming method overrides some inherited method,
it still grants access to all the domains the overridden method did: this check han-
dles in a simple way dynamic dispatch while still allowing the system to be open and
further extended with applications unknown when the first applications are checked.

As mentioned above, the transitivity of the operations are ensured because the rela-
tion⊆ is obviously transitive. Those rules are translated into the Algorithm 4.3.1. As previ-
ously mentioned, Java loading mechanism works one class at a time. Since applications
(and classes, for that matter) may depend on each other, the algorithm must keep some
information about unsatisfied dependencies (wait(A) is the set of all the applications A is
waiting for to become selectable) and collect all the constraints imposed on methods until
they are actually loaded and the constraints can be checked (unsolved(A.C.m) is the set
of all the domains from which already-loaded methods call A.C.m). We also use another
temporary function ruleswait, similar to rules, to store all the rules for the methods in
applications waiting for some dependency.

Rule 1 is checked by the code in Lines 9 to 18: as stated before, the verification is
performed only on directly invoked methods; if the invoked method is already loaded the
consistency can be checked right away; if not, the check is postponed by using unsolved.
Rule 2 is easier to check, on Line 6: all the already-loaded methods invoking the incoming
one have registered their requirements to unsolved. Finally Rule 3 is tested on Line 1.
In the event of failure of this check when the method is loading, we decide to resolve the
conflict between already installed applications and the new one by rejecting the incoming
code. This strategy could be refined by considering application removals in order to make
way for the new one.

The Algorithm 4.3.2 wraps the complete verification of an incoming application. The
main task to perform is to mark newly selectable applications as such, when they were
waiting for the newly-loaded one, on Lines 10 to 16. The final operation of cleaning-up
temporary data structures is not detailed here.

Once the methods of A are verified, the application can be securely installed on the
system. Thus the system has to be updated by the installation of the new application with
the following function:

install((A,PA), d,S) = (D,A ∪ {A},U ′, δ[A 7→ d],P ′)

with
P ′ = (M∪MA,D, rules ∪ instA,d,S ◦ rulesA).

The application will become selectable as soon as all its dependencies will be re-
solved, this means that all the called methods must be methods of selectable applica-
tions, and that all the inherited classes must also be classes of selectable applications.
Thus,

U ′ = U if ∀A.C.m ∈MA, ∀A′.C ′.m′ ∈ Idirect(A.C.m), A′ ∈ A \ U
and ∀A.C.m ∈MA, (A.C ≤ A′.C ′)⇒ (A′ ∈ A \ U)

= U ∪ {A} otherwise

On device verification: compositional technique | version 2.9 | page 44 / 80

1: if A.C inherits A′.C ′ and ∃A′.C ′.m and (rules∪ruleswait)(A′.C ′.m) 6⊆ rulesiA(A.C.m)
then

2: return FAIL
3: else if A.C inherits A′.C ′ and wait(A′) 6= ∅ then
4: wait← wait[A 7→ wait(A) ∪ {A′}]
5: end if
6: if unsolved(A.C.m) 6⊆ rulesiA(A.C.m) then
7: return FAIL
8: end if
9: for all invoke A′.C ′.m′ bytecode do

10: if A′.C ′ is already loaded then
11: if {d} ∪ rulesiA(A.C.m) 6⊆ (rules ∪ ruleswait)(A′.C ′.m′) then
12: return FAIL
13: end if
14: else
15: unsolved← unsolved[A′.C ′.m′ 7→ unsolved(A′.C ′.m′) ∪ {d} ∪ rulesiA(A.C.m)]
16: wait← wait[A 7→ wait(A) ∪ {A′}]
17: end if
18: end for
19: return SUCCESS

Algorithm 4.3.1: Verification of the method A.C.m loaded in the domain d.

1: rulesiA ← instA,d,S ◦ rulesA
2: for all class C of application A do
3: for all method m defined in class C do
4: if verify method(A.C.m) = FAIL then
5: return FAIL
6: end if
7: end for
8: end for
9: ruleswait← ruleswait ∪ rulesiA

10: for all B such that wait(B) = ∅ and rules(B) = ∅ do
11: /** Note that A is the only possible B at the first iteration **/
12: rules← rules[B 7→ ruleswait(B)]
13: for all B′ such that B ∈ wait(B′) do
14: wait← wait[B′ 7→ wait(B′) \ {B}]
15: end for
16: end for
17: clean unsolved and ruleswait
18: return SUCCESS

Algorithm 4.3.2: Loading of an application A with policy (MA,LA, rulesA) in a domain d of S.

On device verification: compositional technique | version 2.9 | page 45 / 80

Lemma 4.3.2 Let (Ai)i be a list of applications and S be the system

S = install((An, PAn), dn, install((An−1, PAn−1), dn−1, . . . install((A0, PA0), d0,S∅)))

where S∅ = (D, ∅, ∅, δ∅, (∅,D, rules∅)) (δ∅ and rules∅ are defined only on ∅) and each
application passes the verification to be loaded in its domain. Then S is secure.

Proof. We prove by induction on the number of methods installed that, for any path
from some m1 (we abbreviate full names here) to some m2 in the call graph for S ′,
{δ(m1)}∪rules(m1) ⊆ rules(m2) and that for all methods m1 and m2 such that m1 ≤ m2,
rules(m2) ⊆ rules(m1), which entails the result. This is obviously for S∅. Let us consider
a method m that is added to the system in domain d after passing the verification. And let
us consider two methods m1 and m2 such that there is a path m1 . . .mi−1.m.mi+1 . . .m2

in the call graph. By the induction hypothesis, we get {δ(m1)}∪ rules(m1) ⊆ rules(mi−1)
and {δ(mi+1)} ∪ rules(mi+1) ⊆ rules(m2).
By definition of the call graph, there is some method m′ ∈ Idirect(mi−1) with m ≤ m′. If
m′ = m, by Rule 2, we get rules(mi−1) ⊆ rules(m). Otherwise, there is a one-arrow path
from mi−1 to m′ so we get rules(mi−1) ⊆ rules(m′) by the induction hypothesis. And by
Rule 3, we get rules(m′) ⊆ rules(m).
We also know from the call graph that there is some method m′′ ∈ Idirect(m) with mi+1 ≤
m′′. By Rule 1, we get rules(m) ⊆ rules(m′′) and by induction hypothesis we know
rules(m′′) ⊆ rules(mi+1). Summing up those results, we get {δ(m1)} ∪ rules(m1) ⊆
rules(m2).
Let us consider any two methods m1 and m2 such that m1 ≤ m2. If both methods are
different from m, rules(m2) ⊆ rules(m1) entails from the induction hypothesis. If m1 = m,
we get the result by Rule 3. We cannot have m2 = m and m1 6= m since the Java-loading
mechanism ensures that m1 gets loaded after m.

Removal. Note that removing an application does not break the consistency of the prop-
erties our algorithms ensure. So no particular additional checking is necessary on a JVM
able to unload code.

4.3.2 Addition of new domains

Designers of applications may want to change the application by adding new domains,
for example to offer services to new partners.

Definition 4.3.3 (On-device verification of access from new domains) LetM be a set
of methods of an application A and D a set of domains. Access to the methods M can
be granted from the domains D if for each method A.C.m ∈M :

∀A′.C ′.m′ ∈ Idirect(A.C.m), D ⊆ rules(A′.C ′.m′) (4.1)
∀A′.C ′, A′.C ′.m ≤ A.C.m⇒ D ⊆ rules(A′.C ′.m) (4.2)

Note that (4.1) and (4.2) of Definition 4.3.3 correspond respectively to (1) and (3) of
Definition 4.3.1. We do not need to recheck (2) since the set of domains from which calls
to A.C.m are granted can only grow.

Once the extended policy is verified, we update the system thus:

add((M,D), A, (D,A,U , δ, (M,D, rules))) = (D,A,U , δ, (M,D, rules ∪ (m ∈M 7→ D))).

This extension of the set of domains from which access is granted can be checked for
consistency following the Algorithm 4.3.3.

On device verification: compositional technique | version 2.9 | page 46 / 80

1: for all A.C.m of M do
2: if A.C inherits A′.C ′ and ∃A′.C ′.m and D 6⊆ rules(A′.C ′.m′) then
3: return FAIL
4: end if
5: for all invoke A′.C ′.m′ bytecode do
6: if D 6⊆ rules(A′.C ′.m′) then
7: return FAIL
8: end if
9: end for

10: end for
11: rules← rules ∪ (A.C.m ∈M 7→ D)
12: return SUCCESS

Algorithm 4.3.3: Verification of the consistency when granting access to M from D.

4.4 Implementation on Java-enabled smart cards

The model described in previous sections is abstract enough to be integrated in any load-
ing process of Java-based systems. Since this model has been specially designed to be
embedded in very constrained systems, Java-enabled smart cards appear to be appro-
priate targets for an integration example. We first introduce the technologies considered
to deploy Java applications on smart cards, namely Java Card and GlobalPlatform. Then
we describe how entities from our model are interpreted in this context, and how control
flow policies are encoded and embedded for on-device verification. Finally we discuss
about integration of verification algorithms within the virtual machine.

4.4.1 Concrete instantiation of the model

The control flow model described in Section 4.2 can be easily instantiated in a context
as Java Card&GlobalPlatform. Domains from the model are mapped to GlobalPlatform
security domains, applications from the model are mapped to Java Card applets and
their related classes, and the shared methods declared by objects that implement the
Shareable interface from the Java Card API. This mapping is coherent since it satisfies
assumptions and hypotheses of the model. In the model it is assumed that admittance in
a domain is controlled by the underlying system, which is the case for security domains
of GlobalPlatform. It is also assumed in the model that all applications can potentially in-
teract with each other, whatever their domains, and that application interactions are made
only through methods of shared objects. This hypothesis is also satisfied by the proposed
mapping since it corresponds to the least constrained implementations of GlobalPlatform
specifications, i.e., when domains are not isolated from each other. Naturally this hypoth-
esis remains valid on more constrained implementations since it takes into account all
the concretely feasible interactions.

The case of the control flow policy instantiation function inst, and the related security
levels, is trickier since it depends on what the target device is devoted to. Two solutions
are conceivable: to implement this function inside or outside the device. When imple-
mented on-device this function requires a predefined set of security levels that can be
difficult to maintain after issuance of the card. Implementation outside the device per-
mits to have a more versatile set of security levels but can complicate post-issuance
deployment of applications by third-parties. For the purpose of this chapter, we chose the
outside implementation because it does not constrain us to define a set of security levels

On device verification: compositional technique | version 2.9 | page 47 / 80

without a relevant context.

4.4.2 Encoding control flow policies

A technical but important point in the concrete instantiation of our model for GlobalPlat-
form with Java Card is how to encode and attach control flow policies to applications.
Security domains of GlobalPlatform are uniquely identified by an AID that is a sequence
from five to sixteen bytes. Since an instantiated control flow policy of a method consists
of a set of domains authorized to invoke it, it is natural in practice to use a set of AIDs
as an instantiated control flow policy. A null AID is simply used to map the any domain
value (>) from the model. For an application A installed in a domain d, it is not mandatory
to add d to the set of domains authorized to call shared methods from A because it is
automatically added on-device at installation.

Keeping sets of AIDs once applications have been installed on-device is useless: the
number of domains and applications installed on one device will always be small because
of memory constraints. Indeed, a more efficient binary encoding can be reached to keep
policies in memory if the maximal number of domains is fixed to a multiple of eight, and
if one index for the whole system is maintained to map a bit position to a domain. A
bit set to zero in a policy of a shared method denotes that the corresponding domain is
not authorized to call the method, and conversely for a bit set to one. The special value
where all bits are set to one is reserved for the “any domain” value of the model. At loading
time, each time a policy involves a domain never seen before, a free position is simply
assigned to this domain. As a consequence, policies of already loaded shared methods
do not have to be updated when a new domain is recorded since the bit corresponding to
this domain is already set to zero in their policies.

Thanks to this bit-wise encoding, the memory required to keep control flow policies in
the system is greatly reduced since only one or two bytes are needed for each method of
installed applications. In addition to minimize overhead memory requirements, such an
encoding permits to test very efficiently inclusion between sets of domains in verification
algorithms, and consequently to reduce overhead computations.

4.4.3 Integration of on-device algorithms

The algorithms described in Section 4.3 have several practical requirements:

1. to have access to the code of an application before it is installed and selectable;

2. to know the control flow policies attached to shared methods of an application be-
fore its code is analyzed;

3. to keep persistent data related to control flow policies of already loaded applications
across installation of new applications;

4. to prevent an installation or an update if it would break the security policy of already
loaded applications.

For requirements 1 and 4 to be met, it is mandatory to integrate the algorithms in the
application loading process. This can be done using the techniques described in Section
1.5.1.

Satisfaction of the requirement 2 is intimately linked to the specific development and
deployment processes of Java Card. Development of Java Card applets relies on the
classical Java compiler to produce standard class files. However, these class files cannot

On device verification: compositional technique | version 2.9 | page 48 / 80

be loaded directly in a Java Card virtual machine. All class files required to instantiate an
applet, except those from the runtime environment, have to be bundled in a special file,
the CAP file. The conversion involves many tasks such as bytecode verification (types,
operand stack, valid instruction set, etc.), bytecode transformation (typed instructions),
instantiation of the static containers, and bytecode reordering for efficient loading. A
CAP file is in fact organized to be loaded in card memory in one pass. Our algorithms,
especially the one described in Section 4.3.1, are designed to deal with such a constraint,
but they need the policy of a method to be known before its bytecode is analyzed. To
meet the loading process constraints of CAP files, encoded control flow policies have
to be placed before method bytecodes within CAP files. This can be achieved thanks
to special containers, called custom components, included in Java Card virtual machine
specifications. As an alternative, or if custom components are already used for other
purposes by the card manufacturer, it is also conceivable to embed encoded control flow
policies as traditional values into static components of CAP files. In both cases the CAP
file conversion process is amended to include control flow policies specified in parameters
thanks to a very simple DSL. As remarked in Section 4.2.3, it is also possible to include
automatic propagation of control flow policies of shared methods in this process in order
to avoid manual assignment of control flow policies to internal methods (i.e., not part of
Shareable object) (in)directly called from shared methods; this is simply a union of sets
of domains.

To deal with addition of new domain(s) to the policy of a method, we provide APDU
commands implemented in a simple applet installed in the controlling authority domain
(or the card issuer domain) to load the policy update. We rely on PKI mechanism of
security domains to establish a secure channel with the domain that hosts the shared
method whose policy has to be updated. If it succeeds, we check whether this update
would break or not the control flow policy of loaded applications thanks to the algorithm
of Section 4.3.1.

4.5 Multi-application use case on smart card

The control flow policy model introduced in Section 4.2 as well as on-device verification
algorithms detailed in Section 4.3 have been instantiated on Java-enabled smart cards
in Section 4.4. We now illustrate the security benefits from using this model on such
devices with a concrete multi-application use case. We first give an overview of the use
case with security issues to be tackled. Then we describe how applications from this use
case are implemented and then deployed. We finally describe how control flow policies
are enforced step by step according to the deployment scenario, and discuss some points
related to this process.

4.5.1 Overview of the use case

This use case follows the style of previously existing use cases from the literature [37,
22] with addition of GlobalPlatform considerations, support for changes and enhanced
deployment scenarios in order to include post-issuance (un)installation of applications.

The use case consists of a Java Card&GlobalPlatform smart card hosting applications
from different stakeholders as depicted on Figure 4.1. At the beginning, the card is simply
issued with an electronic purse from Bank that includes a service offered to future appli-
cations to debit and to credit the purse. In agreement with the bank, the card issuer can
install applications from other stakeholders if and only if he guarantees that stakeholders

On device verification: compositional technique | version 2.9 | page 49 / 80

Figure 4.1: Overview of application interactions on the use case.

who have paid to use bank services will not relay requests from stakeholders that do not
pay for these services.

Later, the card issuer allows two companies, CarRenter and Airline, to install some
applications on the card. CarRenter installs a loyalty application, while Airline installs
two applications: a loyalty application and an application to manage electronic boarding
passes. The electronic boarding pass application interacts with the loyalty application
to grant some points when a boarding pass is “consumed”, and to debit some points
to pay additional charges at check-in, for example in case of excess luggage. The loy-
alty application of Airline provides a shared service to receive some loyalty points from
its partner CarRenter. The loyalty application of CarRenter also checks last recorded
boarding passes of Airline to offer discount prices to their customers.

Finally, Airline decides to subscribe to bank services and consequently updates its
applications. The purse is now debited by the electronic boarding pass application when
the amount of loyalty points is too low to pay additional charges at check-in and to buy
duty-free goods according to the current boarding pass. On the contrary, the purse is
credited by the loyalty application when the gathered loyalty points exceed some prede-
fined amount. If the installation of this new loyalty application succeeds, then CarRenter
can use its own loyalty application to credit the purse via the loyalty application of Airline
although it has not payed to use the services supplied by Bank.

4.5.2 Implementation and deployment considerations

Each application of the use case is implemented as a Java Card applet. The electronic
purse application of Bank is implemented in the class Purse that registers a shared in-
stance of PurseShared to make its services available to other applications. Thus, the
PurseShared defines two methods: debit(int) and credit(int). The loyalty applica-
tion of Airline is implemented in the class AirlineLoyalty that registers a shared in-
stance of AirlineLoyaltyShared with three methods: getPoints(), addPoints(int) and
removePoints(int). The electronic boarding pass application is implemented in the class
AirlineBoardingPass that registers a shared instance of AirlineBoardingPassShared
with one method: lastBoardingPasses(). The loyalty application of CarRenter is imple-
mented in the class CarLoyalty class.

When the card is issued, three domains exist: the BankSD security domain with the
Purse application installed, the card issuer domain and control authority domain where
our algorithms are deployed. Supplementary security domains are created by the card

On device verification: compositional technique | version 2.9 | page 50 / 80

issuer for each company after issuance of the card to the end-user: AirlineSD domain
for Airline company and CarRenterSD domain for CarRenter company. These domains,
as well as the BankSD domain, are granted the “delegated” privilege by the card issuer
which allows them to freely (un)install their applications in their respective domains. Each
company installs its applications in its domain.

4.5.3 Enforcement of control flow policies

When the card is issued, only the Purse is installed in the BankSD. The control flow
policy of the methods declared in PurseShared is simply empty since neither Airline nor
CarRenter has paid to access its services. One can however imagine that some other
domains (not mentioned in this example) corresponding to other entities who have paid
are authorized to call them.

The card issuer now creates the two security domains AirlineSD and CarRenterSD,
and CarLoyalty is installed by CarRenter in CarRenterSD. As CarLoyalty uses shared
services of AirlineLoyalty and AirlineBoardingPass that are not yet installed, it is
obvious that CarLoyalty is not in the selectable state and thus cannot be used until all
its dependencies are fulfilled. It is important to notice that this behavior, enforced through
GlobalPlatform, has nothing to do with functional dependencies but that it is induced by
our incremental analysis (Algorithm 4.3.2 in Section 4.3.1).

In this state, Airline can only install its applications that do not use the Purse. Air-
line applications have to allow CarRenterSD to invoke the shared methods addPoints of
AirlineLoyaltyShared and lastBoardingPasses of AirlineBoardingPassShared oth-
erwise installation of AirlineLoyalty and AirlineBoardingPass will be rejected and
CarLoyalty will remain not selectable.

According to the scenario described previously, Airline decides to subscribe to Bank
services. Bank consequently updates the control flow policy of the shared methods debit
and credit of PurseShared registered by Purse. This update is straightforward since no
application installed on the card actually uses them and these methods do not invoke
methods (directly or indirectly) from other domains. To update its applications, Airline
has to first uninstall the ones existing on the card. This operation is permitted by Glob-
alPlatform if and only if no instance of their shared objects are retained by CarLoyalty.
This behavior is the expected one and we assume this is the case. After uninstallation
of AirlineLoyalty and AirlineBoardingPass, CarLoyalty remains in the selectable
state. In fact, this is a convenience to avoid a useless re-analysis of all applications that
recursively depend on services of AirlineBoardingPass and AirlineLoyalty in order
to mark them as not selectable. Since control flow policies of selectable applications are
satisfied when AirlineBoardingPass and AirlineLoyalty are installed, they cannot be
broken by their uninstallation.

Airline installs its new AirlineBoardingPass application that remains not selectable
because of unresolved dependencies with AirlineLoyalty. However, installation of
AirlineLoyalty fails because its shared method addPoints does not respect the control
flow policy attached to the method credit of the PurseShared. The control flow policy of
the method credit states that it can be called only from the security domain AirlineSD,
but the method addPoints invokes the method credit and the policy of addPoints per-
mits CarRenterSD to call it. It is not possible for Airline to install its AirlineLoyalty
application even if CarRenterSD is not authorized to call addPoints since CarLoyalty is
already installed.

On device verification: compositional technique | version 2.9 | page 51 / 80

4.6 Conclusion

In this chapter we have presented a control flow policy model for open systems that sup-
port dynamic loading of applications. It is appropriate for autonomous systems because
everything is computed on-device without any third party. It also fits requirements of small
constrained devices, as it has been described for Java-enabled smart cards because ver-
ification is performed at loading time in an incremental way.

Future works will offer support for deeper requirements modifications on-device, after
issuance, especially modifications of control flow policies for already loaded applications.

On device verification: compositional technique | version 2.9 | page 52 / 80

5. Global Policy

5.1 Introduction

In the previous chapters, we have studied the policies of applications in terms of access to
their methods. We now add the notion of global policy of a system that defines the control
of interactions applied by the system on applications. The global policy of a system
defines the sequences of method calls that are forbidden by the system. This type of
policy can be used for example to limit the access of applications to the system APIs,
or for example for the card issuer to limit access to her own services. This policy is
not in conflict with the policies of applications, since policies of applications describe
who is authorized to call methods, and the policy of the system adds further restrictions
regarding the sequences of calls that are forbidden.

5.2 Notations and definitions

We give in this section some additional notations that are used in this chapter, in particular
for finite automata and languages.

Definition 5.2.1 (Finite automaton) A finite automaton is a tuple A = (Σ, S, s0, ζ, SF)
where:

• Σ is the input alphabet,

• S is the set of states,

• s0 ∈ S is the initial state,

• ζ : S × Σ −→ S is the transition function,

• SF ⊆ S is the set of final states.

Definition 5.2.2 (Trimmed automaton) We say that an automaton A = (Σ, S, s0, ζ, SF)
is trimmed if for all state s ∈ S, there exist two words u and v such that ζ(s0, u) = s and
ζ(s, v) ∈ SF .

Definition 5.2.3 (Language) Let A = (Σ, S, s0, ζ, SF) be a finite automaton. The lan-
guage of A, denoted by L(A) is defined by:

L(A) = {a0 . . . an ∈ Σ∗ | ∃(si0 , a0, si1)(si1 , a1, si2) . . . (sin , an, sin+1)
∀0 ≤ k ≤ n, (sik , ak, sik+1

) ∈ ζ, si0 = s0, sin+1 ∈ SF }.

Note that ε denotes the empty word.

On device verification: compositional technique | version 2.9 | page 53 / 80

We now define the factors of a language.

Definition 5.2.4 (Factors) Let L be a language of Σ∗. Then, the left factors, (regular)
factors, and right factors of L are respectively defined by:

lf (L) = {u ∈ Σ∗ | ∃w ∈ Σ∗, uw ∈ L},
fact(L) = {u ∈ Σ∗ | ∃v, w ∈ Σ∗, vuw ∈ L},
rf (L) = {u ∈ Σ∗ | ∃v ∈ Σ∗, vu ∈ L}.

Definition 5.2.5 (Projection) Let Σ and Ξ be two alphabets. Let L ⊆ Σ∗ be a language.
The projection onto Ξ is the alphabetical morphism ΠΞ from Σ to Ξ such that for each x
of Σ, ΠΞ(x) = x if x ∈ Ξ and ΠΞ(x) = ε otherwise.

5.3 Definition of the global policy

At the verification level, the forbidden sequences of calls are described by a finite au-
tomaton.

Definition 5.3.1 (Global policy) Let the global control flow policy of a system G be a
finite trimmed automaton G = (Σ, S, s0, ζ, {sF }) with Σ ⊆M and such that:

• there is no (s, u) ∈ S × Σ∗ with ζ(s, u) = s0,

• there is no (s, u) ∈ S × Σ∗ with ζ(sF , u) = s.

Definition 5.3.2 (Conformity to a policy) We say that a system conforms to the policy
G if for each execution trace t ∈M∗, conform(t,G) holds with:

conform(t,G)⇔ (∀v such that ΠΣ(t) = uvu′, v 6∈ L(G)).

Note that we prohibit any transition incoming into the initial state and outgoing of the
final state in our global policies. Since a trace is not conforming as soon as it contains a
word of the language of the global policy, transitions starting in a final state or leading to
the initial state are useless to detect non-conforming traces: on the one hand, the trace
was already recognized as invalid the first time sF was reached and on the other hand
we can simply chop off the prefix corresponding to the loop from s0 to s0 while keeping
an invalid trace.

Also note that, since the final state has no outgoing transitions, only one final state
is needed: if there were various such final states they would be equivalent and could be
merged.

5.4 Global policy footprint of a method

In this work, we consider open systems that support dynamic application loading. Thus,
we aim at a compositional model in which methods can be verified one by one and sys-
tems can be extended with new methods without re-verification of already loaded code.
In this system, a method m can be valid for a global policy but still contain a part of an
invalid trace. If this method is invoked by another one that produces the beginning of
a forbidden trace, invokes m, and produces the end of a forbidden trace, then m might
participate in the construction of an invalid trace even if all the traces of m are allowed. To
track this kind of behaviors, we define in this section the contribution of a method to the
current execution with respect to the global policy of a system; we call that contribution
the footprint of the method.

On device verification: compositional technique | version 2.9 | page 54 / 80

5.4.1 Definition of the footprint of a method

Definition 5.4.1 (Interprocedural control flow graph) The interprocedural control flow
graph of a set of methods M is the graph ICFGM = (V,E) such that:

• V =
⋃
i∈Vm|m∈M,CFm=(Vm,Em){m.i},

• E =

{(m.i,m.i′) | m ∈M ∧ CFm = (Vm, Em) ∧ (i, i′) ∈ Em
∧Pm[i] 6= invoke m′ with m′ ∈M}

∪ {(m.i,m′′.0) | Pm[i] = invoke m′ ∧m′′ ≤ m′}
∪ {(m.i,m′.i′) | Pm[i] = return ∧ Pm′ [i′ − 1] = invoke m′′ ∧m ≤ m′′}

Let m be a method. Let us remind that Im is the set of methods called by a method
m, directly or indirectly. Then the interprocedural control flow graph of m is ICFGm =
ICFG{m}∪Im

.
In general, it is not possible to compute statically the exact set of traces of a system

or a subsystem, so we compute an over-approximation of that set. In particular, we put
in the interprocedural control flow graph the edges between an invoke instruction and all
the methods that could be actually invoked, due to method overloading.

As we only consider method calls in the policy, we define a morphism that allows us
to restrict the traces to method calls:

calls : V −→ M
m′.i 7−→ m′′ if Pm′ [i] = invoke m′′

m′.i 7−→ ε otherwise

We now define the set of traces of a method m, that is an over-approximation of its
set of execution traces as:

traces(m) = {m.calls(t) | t ∈ paths(ICFGm, {m.0}, {m.i | Pm[i] = return})}.

We can now define the G-footprint of a method m for a policy G that describes the
factors (left, regular and right) of the traces of the policy language that may result from
the execution of this method.

Definition 5.4.2 (G-footprint of a method) The G-footprint of a method m for a policy
G = (Σ, S, s0, ζ, sF) is footG(traces(m)) with

footG(L) =

z if fact(L) ∩ L(G) 6= ∅
(lf (ΠΣ(L)) ∩ rf (L(G)),

ΠΣ(L) ∩ fact(L(G)),
rf (ΠΣ(L)) ∩ lf (L(G)))

otherwise

We denote by FG the set of footprints for a policy G.

This definition allows us to keep information about the contribution of a method m to
creation of forbidden sequences as factors. That contribution is written z whenever the
method contains an execution trace that is prohibited. Otherwise, it is described as a
tuple: the first element of the tuple contains the possible ends of forbidden traces (left
factors of complete execution traces of the method); the second element contains the
full execution traces of the method that are middle elements of forbidden traces, and the
last element of the tuple contains the possible beginnings of forbidden traces. All these
factors will be later aggregated with the beginnings and ends of traces of a method that
invokes m in order to produce the footprint of this calling method.

On device verification: compositional technique | version 2.9 | page 55 / 80

5.4.2 Properties of the operations on footprints

In this section, we present the main operations on footprints and their properties, that will
be useful to obtain compositionality.

Definition 5.4.3 (Union of G-footprints) Let G = (Σ, S, s0, ζ, sF) be a global policy and
f1 and f2 be two G-footprints. Then the union of f1 and f2 is defined depending on their
forms:

z ∪z = z
z ∪ (LF2, F2, RF2) = z
(LF1, F1, RF1) ∪z = z

(LF1, F1, RF1) ∪ (LF2, F2, RF2) = (LF1 ∪ LF2, F1 ∪ F2, RF1 ∪RF2)

Lemma 5.4.4 (footG distributes over union) Let L1 and L2 be two languages, then we
have footG(L1 ∪ L2) = footG(L1) ∪ footG(L2).

Proof. If one of the languages contains a word with a prohibited factor, its footprint will
be z, as will be the union of the footprints and the footprint of the union.
Otherwise, the result follows from the fact that the set of factors (resp. left or right) of a
language is the set containing all the factors (resp. left or right) of its words.

Definition 5.4.5 (Concatenation of G-footprints) Let G = (Σ, S, s0, ζ, sF) be a global
policy. We define the concatenation of two G-footprints depending on their forms.

z.z = z
(LF1, F1, RF1).z = z
z.(LF2, F2, RF2) = z

(LF1, F1, RF1).(LF2, F2, RF2) =

z if RF1.LF2 ∩ L(G) 6= ∅
(LF1 ∪ (F1.LF2 ∩ rf (L(G))),
F1.F2 ∩ fact(L(G)),
RF2 ∪ (RF1.F2 ∩ lf (L(G))))

otherwise

Obviously, the concatenation is not commutative. It has also the following property:

Lemma 5.4.6 The concatenation of footprints is associative.

Proof. Let us consider three footprints. If one of them is z, the result is immediate.
Otherwise, we want to show that

((L1, F1, R1).(L2, F2, R2)).(L3, F3, R3) = (L1, F1, R1).((L2, F2, R2).(L3, F3, R3)).

Let us give names to the two sides:

Res1 = ((L1, F1, R1).(L2, F2, R2)).(L3, F3, R3)
Res2 = (L1, F1, R1).((L2, F2, R2).(L3, F3, R3))

We have (L1, F1, R1).(L2, F2, R2) = z only when R1.L2 ∩ L(G) 6= ∅. On the other side, if
(L2, F2, R2).(L3, F3, R3) = z, the results will obviously coincide. Otherwise, the left factor
of (L2, F2, R2).(L3, F3, R3) will contain L2 so (L1, F1, R1).((L2, F2, R2).(L3, F3, R3)) will be
forced to be z too. The converse is similar.

On device verification: compositional technique | version 2.9 | page 56 / 80

Let us develop further if (L1, F1, R1).(L2, F2, R2) 6= z and (L2, F2, R2).(L3, F3, R3) 6= z.

Res1 = (L1 ∪ (F1.L2 ∩ rf (L(G))), F1.F2 ∩ fact(L(G)), R2 ∪ (R1.F2 ∩ lf (L(G)))
.(L3, F3, R3)

Res2 = (L1, F1, R1).
(L2 ∪ (F2.L3 ∩ rf (L(G))), F2.F3 ∩ fact(L(G)), R3 ∪ (R2.F3 ∩ lf (L(G))))

If Res1 = z then (R2 ∪ R1.F2).L3 ∩ L(G) 6= ∅. Since (L2, F2, R2).(L3, F3, R3) 6= z, that
would mean R1.F2.L3∩L(G) 6= ∅. This would mean that R1.(F2.L3∩rf (L(G)))∩L(G) 6= ∅
so Res2 = z. The converse is similar.
Assuming that Res1 6= z and Res2 6= z, we finish developing the two terms.

Res1 = ((L1 ∪ (F1.L2 ∩ rf (L(G)))) ∪ ((F1.F2 ∩ fact(L(G))).L3 ∩ rf (L(G))),
(F1.F2 ∩ fact(L(G))).F3 ∩ fact(L(G)),
A)

Res2 = (L1 ∪ (F1.(L2 ∪ (F2.L3 ∩ rf (L(G)))) ∩ rf (L(G))),
F1.(F2.F3 ∩ fact(L(G))) ∩ fact(L(G)),
B)

We first consider factors (second component) of Res1 and Res2: (F1.F2∩ fact(L(G))).F3∩
fact(L(G)) and F1.(F2.F3 ∩ fact(L(G))) ∩ fact(L(G)). In both cases, if u is a word of the
language, u is a word of fact(L(G)) that is composed of three factors: u = u1.u2.u3 with
ui ∈ Fi, as fact(L(G)) is closed by fact , we get the equality.

We now consider the left factors (first component) of Res1 and Res2:

(L1 ∪ (F1.L2 ∩ rf (L(G)))) ∪ ((F1.F2 ∩ fact(L(G))).L3 ∩ rf (L(G)))
= L1 ∪ (F1.L2 ∩ rf (L(G))) ∪ ((F1.F2 ∩ fact(L(G))).L3 ∩ rf (L(G)))

and

L1 ∪ (F1.(L2 ∪ (F2.L3 ∩ rf (L(G)))) ∩ rf (L(G)))

So we have to show that

(F1.L2 ∩ rf (L(G))) ∪ ((F1.F2 ∩ fact(L(G))).L3 ∩ rf (L(G)))
= ((F1.L2) ∪ ((F1.F2 ∩ fact(L(G))).L3)) ∩ rf (L(G))

and
F1.(L2 ∪ (F2.L3 ∩ rf (L(G)))) ∩ rf (L(G))

= (F1.L2 ∪ F1.(F2.L3 ∩ rf (L(G)))) ∩ rf (L(G))

are equal. That can be reduced to show that

((F1.F2 ∩ fact(L(G))).L3) ∩ rf (L(G))

and
(F1.(F2.L3 ∩ rf (L(G)))) ∩ rf (L(G))

are equal. In both cases if u is a word of the language, it is composed of three factors:
u = u1.u2.u3 with u1 ∈ F1, u2 ∈ F2, and u3 ∈ L3. As u belongs to rf (L(G)), obviously
u2.u3 ∈ rf (L(G)), and u1u2 ∈ fact(L(G)).

On device verification: compositional technique | version 2.9 | page 57 / 80

We will now show that footG is an endomorphism, i.e., it somehow “distributes” over
concatenation.

Lemma 5.4.7 (Footprint is a morphism) Let L1 and L2 be two languages, then we have
footG(L1.L2) = footG(L1).footG(L2).

Proof. If footG(L1) = z or footG(L2) = z, then footG(L1.L2) = z because fact(Li) ⊆
fact(L1.L2).
Otherwise, let footG(L1) = (LF1, F1, RF1) and footG(L2) = (LF2, F2, RF2). If we have
footG(L1.L2) = z, we know that there is a factor of L1.L2 in L(G). That factor must be
of the form u1.u2, with u1 ∈ rf (ΠΣ(L1)), u2 ∈ lf (ΠΣ(L2)). Obviously, u1 ∈ lf (L(G)) and
u2 ∈ rf (L(G)). So u1 ∈ RF1 and u2 ∈ LF2 which implies that RF1.LF2 ∩ L(G) = ∅ so
footG(L1).footG(L2) = z.
If footG(L1.L2) 6= z, we have:

footG(L1.L2) = (lf (ΠΣ(L1.L2)) ∩ rf (L(G)),
ΠΣ(L1.L2) ∩ fact(L(G)),
rf (ΠΣ(L1.L2)) ∩ lf (L(G)))

Let us first consider the factors :

ΠΣ(L1.L2) ∩ fact(L(G))
= (ΠΣ(L1).ΠΣ(L2)) ∩ fact(L(G))
= ((ΠΣ(L1) ∩ fact(L(G))).(ΠΣ(L2) ∩ fact(L(G)))) ∩ fact(L(G))

For left factors we have:

lf (ΠΣ(L1.L2)) ∩ rf (L(G))
= lf (ΠΣ(L1).ΠΣ(L2)) ∩ rf (L(G))
= (lf (ΠΣ(L1)) ∪ΠΣ(L1).lf (ΠΣ(L2))) ∩ rf (L(G))
= (lf (ΠΣ(L1)) ∩ rf (L(G))) ∪ (ΠΣ(L1).lf (ΠΣ(L2)) ∩

rf (L(G)))
= LF1 ∪ (ΠΣ(L1).lf (ΠΣ(L2)) ∩ rf (L(G)))

As all the words of rf (L(G))) are concatenations of factors of L(G))

= LF1 ∪ ((ΠΣ(L1) ∩ fact(L(G))).lf (ΠΣ(L2)) ∩ rf (L(G)))
= LF1 ∪ (F1.lf (ΠΣ(L2)) ∩ rf (L(G)))

Obviously, we have:

= LF1 ∪ (F1.(lf (ΠΣ(L2)) ∩ rf (L(G))) ∩ rf (L(G)))
= LF1 ∪ (F1.LF2 ∩ rf (L(G)))

and we can obtain the right factors in the same way.

From Lemma 5.4.4 and Lemma 5.4.7, we get the following proposition:

Proposition 5.4.8 For a language L ⊆ M∗ and a global policy of the system G =
(Σ, S, s0, ζ, sF), we have

footG(L) =
⋃

m0m1 . . .mn ∈ L |
∀0 ≤ i ≤ n,mi ∈M

footG({m0}).footG({m1}) . . . footG({mn}).

On device verification: compositional technique | version 2.9 | page 58 / 80

5.4.3 Compositionality of the footprint computation

The G-footprints of methods can be computed in compositional way except in the pres-
ence of mutual recursive methods that have to be analyzed together. For a method m,
we compute the strongly connected components of the graph CGm. Starting from m, we
have a partial order of components as the transitive closure of the relation saying that a
component c1 is lower than a component c2 if there exists an edge from c1 to c2. Then,
the methods of each strongly connected component have to be analyzed together, when
all the greater components have been analyzed (i.e. when their footprints are available).

Proposition 5.4.9 (Compositionality) Let us consider a method m and a global policy
of the system G = (Σ, S, s0, ζ, sF), and M the set of methods of the strongly connected
component of CGm that contains m. Then,

footG(traces(m)) = composeG,M (calls(paths(ICFGM ,m.0, {m.i | Pm[i] = return})))

with the morphism

composeG,M : M −→ FG
m′ 7−→ footG(traces(m′)) if m′ 6∈M
m′ 7−→ footG({m′}) if m′ ∈M

Proof. Straightforward from Proposition 5.4.8.

5.5 Implementation of the footprint computation

Our targets are small embedded systems. Thus, we need to provide a compact represen-
tation of footprints that uses as little memory as possible and that is easy to manipulate.
For this purpose, we use sets of pairs of states of the automaton to represent footprints.
Using this representation, we only need one set since left factors obviously end at sF and
right factors obviously start at s0.

Definition 5.5.1 (G-footprint implementation) Let G be a global policy of the system.
The G-footprint implementation is given by the function:

Φ : FG −→ ℘(S × S)
z 7−→ {(si, sj) | ∀si, sj ∈ S}

(LF,F,RF) 7−→ {(si, sj) | ∃u ∈ F, ζ(si, u) = sj}
∪ {(s0, si) | ∃u ∈ RF, ζ(s0, u) = si}
∪ {(si, sF) | ∃u ∈ LF, ζ(si, u) = sF }

We write Fm for the implementation of the G-footprint of a method m, namely Fm =
Φ(footG(traces(m))).

We now define an internal operation of composition of footprint implementations.

Definition 5.5.2 (Composition) The composition over ℘(S × S) is defined as, for S1

and S2:
S1 ⊕ S2 = {(si, sF) | (si, sF) ∈ S1}

∪ {(s0, si) | (s0, si) ∈ S2}
∪ {(si, sj) | ∃k, (si, sk) ∈ S1, (sk, sj) ∈ S2

or ∃k, (s0, sk) ∈ S1, (sk, sF) ∈ S2

or (s0, sF) ∈ S1 ∪ S2}

On device verification: compositional technique | version 2.9 | page 59 / 80

Note that the definition forces the composition to be the full set S × S as soon as it
contains (s0, sF). It is easy to see that {(si, sj) | ∀si, sj ∈ S} is absorbing for ⊕: this
corresponds to the element z for normal footprints. So we will also write z for the full set
S × S.

Lemma 5.5.3 Let S1, S2, S3 and S4 be elements of ℘(S × S). The composition is mono-
tonic: if S1 ⊆ S2 and S3 ⊆ S4 then S1 ⊕ S3 ⊆ S2 ⊕ S4.

The proof of this lemma is straightforward.

Lemma 5.5.4 Φ is a morphism i.e., Φ(f1.f2) = Φ(f1)⊕ Φ(f2).

Proof. If fi = z, then f1.f2 = z and Φ(fi) = Φ(f1.f2) = z which will absorb Φ(f3−i).
Let us then assume that f1 6= z and f2 6= z. We write f1 = (LF1, F1, RF1) and f2 =
(LF2, F2, RF2).
Let us first prove that Φ(f1.f2) ⊆ Φ(f1)⊕ Φ(f2). If f1.f2 = z, this means that RF1.LF2 ∩
L(G) 6= ∅. So we have some u = u1.u2 such that u1 ∈ RF1 and u2 ∈ LF2 and u ∈
L(G), which means that ζ(s0, u) = ζ(ζ(s0, u1), u2) = sF . From this, we conclude that
(s0, ζ(s0, u1)) ∈ Φ(f1) and (ζ(s0, u1), sF) ∈ Φ(f2) and so that Φ(f1) ⊕ Φ(f2) = z since it
contains (s0, sF).
Let us now assume that f1.f2 6= z and write f1.f2 = (LF,F,RF).
We consider each of the three sub-sets composing Φ(fi) separately.
We have F = F1.F2 ∩ fact(L(G)). Let us consider some u ∈ F . We know that there exist
u1 and u2 such that u = u1.u2, with u1 ∈ F1 and u2 ∈ F2. If we consider a pair of states
(si, sj) such that ζ(si, u) = sj , we know that ζ(si, u1) is some state sk and that (si, sk)
must be in Φ(f1) and that (sk, sj) must be in Φ(f2) since ζ(sk, u2) = sj , by definition of Φ.
So (si, sj) ∈ Φ(f1)⊕ Φ(f2).
We have LF = LF1∪(F1.LF2∩rf (L(G))). Let us consider some u ∈ LF and (si, sF) a pair
of states such that ζ(si, u) = sF . If u ∈ LF1, then (si, sF) must be in Φ(f1) by definition
of Φ; and so it is preserved by ⊕. Otherwise, we must have u ∈ F1.LF2 so u = u1.u2

with u1 ∈ F1 and u2 ∈ LF2. So ζ(si, u1) must be some state sj with ζ(sj , u2) = sF . By
definition of Φ, we have (si, sj) ∈ Φ(f1) and (sj , sF) ∈ Φ(f2) which entails that (si, sF) is
in Φ(f1)⊕ Φ(f2).
By a similar argument we prove that the image of RF is also included in Φ(f1)⊕ Φ(f2).
Conversely, let us prove that Φ(f1) ⊕ Φ(f2) ⊆ Φ(f1.f2). Let us consider for this (si, sj) in
Φ(f1)⊕ Φ(f2). We reason over the three definition cases of ⊕.

1. sj = sF and (si, sF) ∈ Φ(f1); then there exists some u such that ζ(si, u) = sF by
definition of Φ and so u must be in RF1∪F1∪LF1. In all three sub-cases, since it is
a right factor of L(G) (because it can end in sF) it must also be in LF1. This entails
that it is in LF by definition of concatenation so (si, sF) is in Φ(f1.f2).

2. si = s0 and (s0, sj) ∈ Φ(f2). This case is similar to the previous one.

3. We have again three sub-cases.

• There exists some sk such that (si, sk) ∈ Φ(f1) and (sk, sj) ∈ Φ(f2). So we
can find u1 ∈ RF1 ∪F1 ∪LF1 such that ζ(si, u1) = sk and u2 ∈ RF2 ∪F2 ∪LF2

such that ζ(sk, u2) = sj .

– If u1 ∈ LF1, then sj = sk = sF and u2 must be ε since there is no transition
out of sF . Then u = u1 is in LF and (si, sF) is in Φ(f1.f2).

On device verification: compositional technique | version 2.9 | page 60 / 80

– If u2 ∈ RF2, then si = sk = s0 and u1 must be ε since there is no transition
to s0. Then u = u2 is in RF and (s0, sj) is in Φ(f1.f2).

– If u1 ∈ F1 and u2 ∈ LF2, then sj = sF and we just need to show that u1.u2

is in rf (L(G)) to prove that u1.u2 is in LF . Since G is trimmed, there must
exist some word v such that ζ(s0, v) = si so u1.u2 is indeed a right factor
of L(G), which proves that (si, sF) is in Φ(f1.f2).

– If u1 ∈ F1 and u2 ∈ F2, since the automaton is trimmed, u1.u2 is a factor
of L(G) and is in the factors of f1.f2 so (si, sj) is in Φ(f1.f2).

– If u1 ∈ RF1 and u2 ∈ LF2 then u1.u2 ∈ L(G) so RF1.LF2 ∩ L(G) 6= ∅ so
f1.f2 = z in which case (si, sj) ∈ Φ(f1.f2) = z.

– If u1 ∈ RF1 and u2 ∈ F2, then si = s0 and there must exist some word v
such that ζ(ζ(s0, u1.u2), v) = sF since G is trimmed. So u = u1.u2 is a left
factor of L(G), so u must be in the right factors of f1.f2 which entails that
(s0, sj) ∈ Φ(f1.f2).

• If (si, sj) is present because there is some k such that (s0, sk) ∈ Φ(f1) and
(sk, sF) ∈ Φ(f2) this means that there is some word u1 such that ζ(s0, u1) = sk
with u1 in the right factors of f1 (because the factors of f1 that are in lf (L(G))
are also in the right factors; and if u1 is in the left factors, then sk = sF so it is
also in the right factors) and some u2 such that ζ(sk, u2) = sF with u2 in the
left factors of f2, so f1.f2 = z and (si, sj) ∈ Φ(f1.f2).
• Lastly, if (s0, sF) is in Φ(f1), then we must have f1 = z by definition of foot-

prints, since it means that a factor of the underlying language of traces is
prohibited. Then f1.f2 = z and Φ(f1.f2) = z so (si, sj) ∈ Φ(f1.f2).

Φ also distributes over ∪.

Lemma 5.5.5 For any f1 and f2 two footprints, Φ(f1 ∪ f2) = Φ(f1) ∪ Φ(f2).

Proof. Let us consider f1 and f2 two footprints. If f1 = z, Φ(f1 ∪ f2) = Φ(z) = z =
z ∪ Φ(f2). The result is identical if f2 = z. If neither of them is z, we write f1 =
(LF1, F1, RF1) and f2 = (LF2, F2, RF2). f1 ∪ f2 = (LF1 ∪ LF2, F1 ∪ F2, RF1 ∪ RF2) and
the definition of Φ allows us to conclude.

In the rest of this section, we define a system of equations that allows us to compute
the footprint implementation of a method that corresponds to the G-footprint of a method
m.

For each method m we consider M the set of methods of the strongly connected
component of CGm that contains m. We define the system of equations (SM) where the
rules instr are given by Figure 5.1:

Sm′′.i =
⋃

(m′.j,m′′.i)∈ICFGM

instrPm′ [j]
(Sm′.j)

with the initial state

Sm.0 ⊇
{
{(si, si) | si ∈ S} ∪ {(si, sj) | si, sj ∈ S if s0 = sF } when m 6∈ Σ
{(si, sj) | si, sj ∈ S, ζ(si,m) = sj or ζ(s0,m) = sF }} when m ∈ Σ

Note that the last rule of Figure 5.1 takes the union of the footprint implementations
of all the actual methods that could be invoked by the instruction.

Proposition 5.5.6 The system of equations (SM) admits a least solution.

On device verification: compositional technique | version 2.9 | page 61 / 80

b 6= invoke

instrb(S) = S

b = invoke m′ and m′ 6∈ Σ and m′ ∈M

instrb(S) = S

b = invoke m′ and m′ ∈ Σ and m′ ∈M

instrb(S) = S ⊕ Φ(footG({m′}))

b = invoke m′ and m′ 6∈M

instrb(S) = S ⊕
S

m′′≤m′ Fm′′

Figure 5.1: Transfer function instrb(S).

Proof. The set (℘(S ×S),⊆,∪,∩) is a finite lattice. Lemma 5.5.3 implies that the transfer
functions instr b are monotonic with respect to ⊆. Thus we can apply Knaster-Tarski
theorem.

And finally we prove that this least fixpoint construction indeed implements footprints.

Proposition 5.5.7 Let m be a method, M the set of methods of the strongly connected
component of CGm that contains m. Then

Fm =
⋃

i|Pm[i]=return

Si

with Si the least solutions of the equations of (SM).

Note that this property justifies the last rule of Figure 5.1: the computation of the
solution of (SM) can be based on the footprint implementations of all the methods that
are not in the same strongly connected component of the call graph since that will result
in the same value. And this proves that the system of equations indeed provides a way
to compute the footprint implementations.
Proof. Let us write

U =
⋃

i|Pm[i]=return

Si

and let us first prove that Fm ⊆ U .

Fm = Φ(footG(traces(m)))
= Φ(

⋃
t∈traces(m) footG({t}))

= Φ(
⋃
m1...mn∈traces(m) footG({m1}) . . . footG({mn}))

=
⋃
m1...mn∈traces(m) Φ(footG({m1}))⊕ · · · ⊕ Φ(footG({mn}))

Let us consider any pair in Fm and some trace t of m so that the pair is in Φ(footG({t})).
Since traces come from actual execution paths, we consider one path p in CGm such
that the path produces the trace t. Let us sum up the constraints on (SM) we obtain by
looking at that path p. p can be written as (mj0 .ij0) . . . (mjq .ijq) where at each step jk the
instruction ijk of method mjk is executed.
Let us reason on the length of p to show that, if we consider a prefix path p′ of p of any
length, the set Sm′.i′ must contain Φ(footG(t′)) where t′ is the part of t corresponding to p′.

On device verification: compositional technique | version 2.9 | page 62 / 80

If m ∈ Σ, every trace of m begins with m. In that case we also know that Φ(footG({m})) ⊆
Sm.0 by definition of the initial state of the system (SM). Otherwise, Sm.0 initially contains
simply Φ(footG({ε})).
Let us add one instruction to p′. For all instruction Pmjk

[ijk] along p that is not an invoke,
we simply learn that Smjk

.ijk
⊇ Smjk−1.ijk−1 by the rules of Figure 5.1. Correspondingly, t′

is not extended by a non-invoke instruction.
If the added instruction is Pmjk

[ijk] = invoke m′, we have to consider the various possi-
bilities for m′:

• if m′ 6∈ Σ and m′ ∈ M , t′ is left unmodified and Smjk
.ijk
⊇ Smjk−1.ijk−1 ensures the

result,

• if m′ ∈ Σ and m′ ∈ M , m′ is appended to t′ and we know that we have Smjk
.ijk
⊇

Smjk−1.ijk−1⊕Φ(footG({m′})); by Lemma 5.5.3, Φ(footG({t′})) ⊆ Smjk−1.ijk−1 entails
that Φ(footG({t′}))⊕ Φ(footG({m′})) ⊆ Smjk

.ijk
,

• if m′ 6∈ M , the fragment t′′ of the trace that corresponds to the call of m′ is such
that Φ(footG({t′′})) ⊆

⋃
m′′≤m′ Fm′′ since t′′ is a trace of one such methodm′′; so, by

Lemma 5.5.3 we get Φ(footG({t′}))⊕Φ(footG({t′′})) ⊆ Smjk−1.ijk−1⊕
⋃
m′′≤m′ Fm′′ ⊆

Smjk
.ijk

.

From this we easily conclude that Φ(footG({t})) ⊆ U and consequently that Fm ⊆ U .
Let us prove the converse, U ⊆ Fm, by considering the set of definitions (RM):

Rm′.i =
⋃

p∈paths(ICFGM ,{m.0},{m′.i})

Φ(footG({m.calls(p)}))

with the fact that Fm =
⋃
i|Pm[i]=returnRm.i. We can show that, for any edge (m′.j′,m′′.j′′)

in ICFGM , Rm′′.j′′ ⊇ instrPm′ [j
′](Rm′.j′) by cases over the definition of instr b in a similar

way to previously shown. Since U is the least solution of (SM), we directly get that
Sm′.i′ ⊆ Rm′.i′ for all m′.i′ ∈ ICFGM . Therefore

U =
⋃

i|Pm[i]=return

Sm.i ⊆
⋃

i|Pm[i]=return

Rm.i = Fm

which concludes the proof.

This proof uses some property of interest to embed the verification. As we noticed
just above, as soon as we have a set of Rm′.i′ such that, for any edge (m′.j′,m′′.j′′) in
ICFGM , Rm′′.j′′ ⊇ instrPm′ [j

′](Rm′.j′), then the union of footprints at all return instruc-
tions must contain Fm, since it is the least such set. This means that checking for those
inclusions will provide a low-complexity technique to ensure that a declared footprint for a
method m is safe i.e., is an over-approximation of Fm. This also means that the footprint
implementation against which some method bytecode will be verified can be any such
over-approximation: to handle method overloading we will only use the union of all the
footprints of methods in one class and its subclasses.

5.6 On-device verification

5.6.1 Lightweight verification

The computation of footprints uses a fix-point computation thus, it is too heavy for the
computation capability of a smart card. So we use for this kind of policies the “Lightweight

On device verification: compositional technique | version 2.9 | page 63 / 80

verification” as mentioned in Section 1.5.2. The original Lightweight Bytecode Verification
has to be extended to manage the footprints as it was originally dedicated to type verifi-
cation. Anyway, as we have encoded the footprints with a structure that is a semi-lattice,
the verification itself is still the same. The verification algorithm is then linear in bytecode
number and analyzes bytecode in stream which is the loading model of Java Card. Each
class will be loaded with the footprints of its methods, and a repository of footprints of
already loaded methods will be managed on-device.

5.6.2 Encoding of the embedded proof

Each class file is analyzed off-board, either alone or with the methods of its strongly
connected component when needed. Then, meta-data have to be shipped with the code.
In traditional Java, they are added to the class file in the form of class file attributes. For
GlobalPlatform with Java Card, we use the same architecture as the one presented in the
previous chapter in section 4.4. We need:

• for each method m of the class:

– the over-approximated footprint Fm of m, so that every method m′ such that
m′ ≤ m has a footprint included in Fm,

– “proof annotations” that is the list of intermediate footprints Si computed exter-
nally for all the i such that Pm[i] is the target of a jump,

• for each method m that is invoked by methods m0, . . . ,mn of the class :

– “believed footprint” that is the footprint Fm of m that has been used in compo-
sition to compute the footprints of the methods m0, . . . ,mn.

Let us consider a system with a global policy G = (Σ, S, s0, ζ, sF). Footprints are
encoded in a binary form, if S contains n elements, then we need n × (n − 1) bits for a
footprint and the bit 0 ≤ i < n × (n − 1) encodes the presence of (si/n, si mod n) in the
footprint of m. For readability of the rest of this section, we use the array notation and
denotes by Fm[i] the (i+ 1)-th bit of Fm.

5.6.3 On-device meta-data

The on-device system needs to keep data to manage the policy. We define two repos-
itories, R which maps the verified methods to their footprint and Rtmp the temporary
repository which maps methods that are not loaded to their believed footprint.

The global policy G = (Σ, S, s0, ζ, sF) is an automaton on a subset of the methods,
thus we need to record Σ and ζ providing that we encode the initial state as number 0 and
the final state as number n− 1 if the automaton has n states. To take ζ into account and
record it on the device, we just include it in the initial state of the on-device verification.
The system starts in a state where:

• R is empty: we write R[m] = ⊥ for all method m,

• Rtmp contains for each m of Σ a believed footprint such that for each ζ(si,m) = sj ,
the Rtmp [m][i× n+ j].

On device verification: compositional technique | version 2.9 | page 64 / 80

5.6.4 Verification algorithm

The verification algorithm is given by the Algorithm 5.6.1. For a policy of n states, a
footprint is a vector of n × (n − 1) bits. Then the basic operations are encoded in the
following way:

• Finit is the vector in which each F [i ∗ n+ i] is equal to 0,

• nonvalid(Fm) is (Fm&mask == mask) with mask the vector that encodes {(s0, sn)}
i.e. all the bits equal to 0 except the bit n− 1,

• F1 ⊆ F2 is F1 | F2 == F2.

From lines 1 to 7, we check the believed footprints: if another footprint for the same
method already exists on the device, the shipped one is just dropped, otherwise it is
added to the temporary repository. Then, for all footprints of the methods, we check from
line 8 to 11 if the footprint is valid, if it conforms to the believed ones of the applications
already loaded on the system, and if it is compliant with the class hierarchy until line
15. Then, the last part of the algorithm verifies the proof of the footprint of the method
without any fix-point computation. For each branching bytecode, we just have to verify
that the computed footprint is lower than the proof annotation. When the current bytecode
is a method invocation, we compose the current footprint with the footprint of the invoked
method (from the repository or from the temporary repository) line 25, the composition is
detailed in the Algorithm 5.6.2.

The Algorithm 5.6.2 implements the composition in a slightly different way from the
formal definition. The composition of F1 and F2 computed here is only the union of:

• {(si, sj) | ∃k, (si, sk) ∈ F1, (sk, sj) ∈ F2}, implemented by lines 2 to 8,

• {(s0, si) ∈ F2}, line 10,

• {(si, sF) ∈ F1}, line 11.

Instead of saturating the composition as soon as (s0, sF) is found in it, since the actual im-
plementation must directly reject the code, we simply test after this computation whether
(s0, sF) was added and fail if this is the case.

5.7 Conclusion

In this chapter we have proposed the most powerful control flow policies of our hierarchy
of models. However, due to the size of target devices, it is not possible to add such an
automaton to each application or even each domain. Thus we propose to use only one
“global” policy for each system. This policy can be controlled by the card issuer, or the
issuer can delegate the control to another party regarding that the loading mechanism
will remain secure.

On device verification: compositional technique | version 2.9 | page 65 / 80

1: for all believed footprint FA′.C′.m′ in the class file do
2: if R[A′.C ′.m′] 6= ⊥ or Rtmp [A′.C ′.m′] 6= ⊥ then
3: Drop FA′.C′.m′
4: else
5: Rtmp [A′.C ′.m′] = FA′.C′.m′

6: end if
7: end for
8: for all footprint FA.C.m in the class file do
9: if nonvalid(FA.C.m) or FA.C.m 6⊆ Rtmp [A.C.m] then

10: return FAIL
11: end if
12: if A.C.m ≤ A′.C ′.m′ and FA.C.m 6⊆ FA′.C′.m then
13: return FAIL
14: end if
15: end for
16: read proof annotations in array proof
17: for all method A.C.m defined in class C do
18: Ftmp = Finit
19: for all bytecode i from 0 to end do
20: if PA.C.m[i] ∈ branching bytecodes to address a then
21: if Ftmp 6⊆ proof [A.C.m][a] then
22: return FAIL
23: end if
24: else if PA.C.m[i] = invoke A′.C ′.m′ then
25: Ftmp = compose(Ftmp , R[A′.C ′.m′]|Rtmp [A′.C ′.m′])
26: if nonvalid(Ftmp) then
27: return FAIL
28: end if
29: else if PA.C.m[i] = return and Ftmp 6⊆ FA.C.m then
30: return FAIL
31: end if
32: end for
33: end for
34: drop proof
35: add all FA.C.m to R
36: return SUCCESS

Algorithm 5.6.1: Loading of a class C of application A.

On device verification: compositional technique | version 2.9 | page 66 / 80

1: Let Fres be initialized to 0
2: for all 0 ≤ i < n− 1 do
3: for all 0 ≤ j < n such that F1[i× n+ j] == 1 do
4: for all 0 ≤ k < n such that F2[j × n+ k] == 1 do
5: Fres[i× n+ k] = 1
6: end for
7: end for
8: end for
9: for all 0 ≤ i < n do

10: Fres[i] = Fres[i]|F2[i]
11: Fres[i× n+ n− 1] = Fres[i× n+ n− 1]|F1[i× n+ n− 1]
12: end for

Algorithm 5.6.2: Composition of footprint: compose (F1, F2).

On device verification: compositional technique | version 2.9 | page 67 / 80

6. Non-interference

Control flow policies described in previous chapters do not catch data flow between ap-
plications. For example, a malicious applet running on your mobile phone or smart card
can disclose confidential information, financial data, address book, social security num-
ber and medical files, etc. If a system runs multiple software units, possibly untrusted,
which share code (e.g. API) or data (e.g. collaborative applications), then the underlying
information flow in terms of data must be verified in order to ensure data confidentiality.
The security threat may originate from the code of the application or from code shared
by some malicious software which cannot be trusted. Hence, allowing dynamic loading
dictates the need to verify that the incoming applet respects desired non-interference
properties. Thus the information flow certification must be done on-device, preferably at
loading time, in order to avoid runtime overhead. Moreover, we argue that, in a runtime
environment that supports deployment of several software units provided by self-sufficient
issuers, the compilation of each software unit must be done without any knowledge about
the other potential software. In this case, and because each runtime environment can
embed a distinct set of software units, the only place where the whole software units can
be checked “together” is the virtual machine where they will be run. Unfortunately, due to
the high complexity of the algorithms and the lack of embedded resources, an information
flow verifier has not yet been implemented on a small, embedded device.

Information flow analysis [39] has been actively investigated for several years, leading
to a rich theory and language design, based on type-checking or static analysis. How-
ever, the information-flow based enforcement mechanisms have been scarcely applied in
practice [47], even for desktop computers. The few practical approaches for embedded
systems rely on the complete call graph of the application and deal with off-board static
verification, and they do not address the challenges raised by open environments.

In previous works, we have proposed a tool, the STAN tool, that implements a model
for checking secure information flow in Java-enabled, open, multiapplication, small sys-
tems. We keep the main features of the Java Virtual Machine including support for dy-
namic class loading and overriding. The tool computes flow signatures in two steps,
an off-board analyzer, and an embedded verifier as described in Section 1.5.2. To our
knowledge, this is the first implementation of an embedded information flow verifier. Ex-
perimental results show that our verifier could be efficiently used for our target systems
and hence, it can be successfully applied in practice.

In this chapter, we first describe quickly the main principle of this tool in Section 6.1,
then we propose in Section 6.2 non-interference policies for systems based on Glob-
alPlatform, or at least using the same concept of domains, and we propose to implement
the verification of these policies in a new tool that takes flow signatures as an input in
Section 6.3.

On device verification: compositional technique | version 2.9 | page 68 / 80

6.1 Overview of the information flow model of the STAN tool

In this section, we describe an information flow framework (in the sense of [39]) suitable
for small systems, as it has been implemented in the STAN tool [5]. As flow signatures
must be embedded with the code, the challenge is to make these signatures as concise
as possible. We first identify sources of confidential data, which, in small systems, typ-
ically reside in instance fields. To express secrecy, we define a security lattice with two
security levels (public and secret), with which class fields are labeled. In order to keep
the model as compact as possible, we perform a field independent, but security level sen-
sitive analysis. Thus, the abstract domain is limited to parameters and other abstractions
for information flow sources (static fields, exceptions, return value of the method, etc.).

The support for openness and dynamic class loading is achieved by performing a
compositional analysis. For each method we compute a context-insensitive flow signa-
ture which contains all potential flows between abstract values generated by the execu-
tion of the method. The definition of the flow relation between values allows to have a
compact representation of flow signatures: one byte is sufficient to encode the possible
flows between two abstract values. Non-interference (Section 1.3.3) is ensured if flow
signatures do not contain any flows from confidential data to a public output.

6.1.1 Security levels

Security lattice

As already said, we define a security lattice with two security levels:

L = {s, p},

where s stands for secret (high level) and p stands for public (low security level). The
order relation v between elements in L is defined as follows: p v s. Using this order
relation, we define the security lattice L of security levels.

Security levels are associated with information flow sources (objects’ fields) and they
should not be confused with Java modifiers (private, public, protected). While Java
modifiers express accessibility within the Java language, the s defined above expresses
secrecy, the fact that the information must not be made accessible through information
flow to unauthorized parties. The default security level of object’s field is p, but restrictions
on classes and their fields can be specified in an external file (e.g., an text or XML file).
We denote by L(C, f) the level associated with a field f in a class C.

Security levels of object fields

Tracing each field is expensive and memory consuming, thus this is not adequate in the
domain of mobile code and small systems. To reduce the size of information flow an-
notations, we perform a field independent but security level sensitive analysis. In a field
independent analysis, all the fields in a structure are modeled as having the same loca-
tion; thus, writing into one field is considered as writing into all the fields in the structure.

Thus, considering the security levels L = {s, p}, an object o is modeled as two parts
(locations): a secret part (denoted by os), for fields with security levels s, and a public part
(denoted by op), for fields with security level p. We denote by T (o) the type of an element
o. To deal with security levels at different field depths, we use the following convention:

On device verification: compositional technique | version 2.9 | page 69 / 80

• The secret part os of an object o contains all the field access paths that contain at
least one field having the security level s:

os = {o.f1 . . . fn | ∃0 < i ≤ n,L(T (o.f1 . . . fi−1), fi) = s}, (6.1)

• The public part op of an object o refers to all fields of o that contain only fields with
security level p on their access path:

op = {o.f1 . . . fn | ∀0 < i ≤ n,L(T (o.f1 . . . fi−1), fi) = p}. (6.2)

The choice of splitting an object in two parts was only dictated by the need to make
memory saving for the embedded proof and for the flow signatures. We noticed that our
choice of splitting an object in two parts is sufficient for applications from literature such
as PACAP [12]. However, safe programs could be rejected because of this simplification.
Yet, our experiments on real Java applications encourage us to believe that two parts are
sufficient in most cases. Indeed, the object programming paradigm encourages the class
proliferation instead of field proliferation within the same class.

6.1.2 Flow relation

Following the non-interference definition, we consider that there is a flow from an input
a to an output b in a program P , denoted by b → a, if an observer of b (some untrusted
piece of code that can access b before and after the execution of P) can infer information
about a.

We consider Java languages thus we can have aliases between objects, as well as
primitive assignments and implicit flows. Because an alias may lead to further data prop-
agation while primitive assignments do not, the origin of flows must be distinguished. This
choice is imposed by the approximation of the field independent analysis. In a field sen-
sitive analysis, this distinction is not mandatory, as every field of every object is tracked
independently, and the flow type is given by the field type. Hence we type the flow relation
with types in F = L × L × {r, v, i}. A flow (l1, l2, t) from a to b is denoted by bl1 t→ al2 ,
where:

• reference flows (r), generate interference through aliasing and denote aliases that
may lead to further data transfers,

• value flows (v), generate interference through copy and represent data transfer
through explicit assignment of primitive types,

• implicit flows (i), generate interference through inference and stand for flows arising
from the control structure of the program.

From an interference through copy we can obtain at least the same amount of infor-
mation as it can be obtained from an interference through inference. In the same way, the
interference through aliasing provides at least the same information and privileges as the
interference through copy. As a conclusion, we consider that the amount of information
leaked by an interference through aliasing is bigger than the one leaked by an interfer-
ence through copy ; similarly, the amount of information leaked by an interference through
copy is bigger than the one leaked by an interference through inference. Therefore, we
define an order relation on the types of flows:

i ≤ v ≤ r.

On device verification: compositional technique | version 2.9 | page 70 / 80

This relation allows us to define a relation between flows, for two elements (l1, l2, t) and
(l′1, l

′
2, t
′) of F ,we have:

((l1, l2, t) ≤ (l′1, l
′
2, t
′))⇔ (l1 = l′1 ∧ l2 = l′2 ∧ t ≤ t′).

6.1.3 Flow signature of a method

Sensitive data are stored in object fields, while objects are made accessible to a method
through parameters, objects allocated inside the method or objects returned by invoked
methods. We compute the signature of a method by abstract interpretation and we use
the object allocation site model : all the objects created/returned at the same program
statement have the same abstraction. We need to consider abstract values representing
all the elements of the program to perform the analysis but certain abstract values are
locally defined inside a method and are not relevant outside. Thus, the global result must
be restricted to the values that survive at the end of the method:

Σm = P ∪ {R,Static,Ex , IO}

with

• P the abstract domain for parameters of a method m (they are denoted by p0, p1,
. . .),

• the return value of the current method, denoted by the abstract value R,

• input/output channels; all the channels are abstracted by a single value, IO ,

• static fields; all static fields are modeled as the fields of a single object, denoted by
the abstract value Static,

• exceptions; all thrown values flow to the abstract value Ex .

Note that in order to unify the model, we associate security levels with all abstract
values, including those not abstracting objects. Hence, the input/output channels IO , the
static world Static, the exceptions Ex have the default security level p, as all sensitive
data flowing to them potentially leak to unauthorized parties. Parameters of primitive
type also have security level p. If a primitive instance field with a security level s is given
as parameter to m in a particular context, its security level is taken into consideration
whenever m is invoked in the given context.

The flow signature of a method is an overapproximation of the set of flows potentially
generated by the execution of that method. The flow signature carries relevant information
for a later use of the method. The flow signature is the result of the analysis performed
by the STAN tool:

Definition 6.1.1 (Flow signatures) Let m be a method. The flow signature of m, de-
noted by Sm, is the result of the analysis of the STAN tool. It is a subset of Σm ×Σm ×F .

with the following property:

Property 6.1.2 (Flow signature soundness) The information flow signature of a method
m is sound with respect to non-interference: if there is no (l1, l2, t) such that (a, b, (l1, l2, t))
belongs to Sm, then two concrete executions of the method m starting in states that only
differs by the value of bl2 will lead to final states having the same value of al1 .

On device verification: compositional technique | version 2.9 | page 71 / 80

6.1.4 Enforcing non-interference

The flow signature of a method allows us to verify non-interference [24]: a program is
secure w.r.t. non-interference if there is no flow of information from an abstract value with
security level s to an abstract value labeled with p. In our framework, a method is secure
if for any flow al1

φ→ bl2 ∈ Sm, we have l2 v l1, according to the ordering relation on
the lattice of security levels. Considering L = {s, p}, a method is secure if there is no
flow from a s value to a p value. Hence, we can define non-interference w.r.t. to the flow
signature of a method:

Definition 6.1.3 (Non-interference for flow signatures) The flow signature of a method,
Sm, is secure w.r.t. to non-interference if it does not contain flows of type ap

φ→ bs, except
the case when a represents the return value of the method, R. The verification of flows
of confidential data to return values is postponed until the method is invoked.

6.1.5 Implementation

The STAN tool proposes an off-board analysis that computes the flow signatures and
that can be embedded and verified on-device using lightweight bytecode verification as
exposed in Section 1.5.2 (see [21] for more details).

6.2 Non-interference policies for GlobalPlatform

As already said in the previous chapters, GlobalPlatform specifications do not clearly de-
fine permitted/forbidden interactions between applications according to their installation
domains in order to let implementations fit specific needs and objectives. If we want to
describe how secret data can circulate between applications, we have to define specific
policies.

The simplest way to consider authorized data transfers is to consider that secret in-
formation can only be shared inside a security domain and cannot leak outside. We call
this situation isolation. Other architectures may be considered to allow more flexible in-
formation transfers. Method calls can be allowed through shareable interfaces and we
have seen in the previous chapters that calls to methods can be controlled by a policy
mechanism. However, this control mechanism does not prevent from illegal data flow
between domain. For example, let us consider an application A0 that is authorized to
call a method A1.C1.m1 and is not authorized to call any method of application A2. If A1

is authorized to call some methods of A2 then data flow may go from A0 to A2 and/or
from A1 to A0 through parameters and return values. Thus, we also want to constrain
data flows and, for this purpose, we use the non-interference signatures to track potential
illegal data flows between domains.

6.2.1 GlobalPlatform policies

In order to express security policies describing collaborations and data flows between
domains, we add a policy to each domain. The security policies can be expressed with
a very simple language, but have enough power to model collaborations schemes in
a smart card, with extension capabilities. In a smart card, the entities exchanging or
sharing data are the applications, but applications have to comply with the policies of the
domains in which they are loaded. Thus the language expresses policies of domains
but the concrete rules will be verified on the code of applications. As we consider that

On device verification: compositional technique | version 2.9 | page 72 / 80

confidential data resides in class fields, a policy expresses flows authorized for data that
resides in secret fields.

In GlobalPlatform the set of domains is a forest. A forest h is completely defined by
h = (V, pred) where pred is a function that associates pred(v) to v if there is an edge from
pred(v) to v in h.

Definition 6.2.1 Let S = (D,A,U , δ,P) be a system. We denote by hS = (D, predS) the
hierarchy of domains of S.

The card issuer will provide some policy rules and functions to verify these rules.
Then, a non-interference rule is a function that allows to define for each domain d a set
of domains from which the applications can acquire secret data of d, depending on the
system it belongs to. Systems denotes a set of systems.

Definition 6.2.2 (Non-intererence policy rule) A non-interference policy rule is a func-
tion nip : Domains × Systems −→ ℘(Domains) where nip(d, (D,A,U , δ,P)) = ∅ when
d 6∈ D.

Let us consider some examples of such policy rules that we can define. The simplest one
is the isolation policy rule that restricts access of the data of a domain to the domain itself
in any hierarchy. It can be defined by:

isolation : Domains× Systems −→ ℘(Domains)
d,S 7−→ {d}

We could also consider that a domain wants to give access to its data to each of its
direct sub-domains, then we have:

subdomains : Domains× Systems −→ ℘(Domains)
d,S 7−→ {d′ | d = predS(d′)}

These non-interference policy rules do not have to be defined by the programmers,
each device supports a non-interference language that has been implemented by the
issuer.

Definition 6.2.3 (Non-interference language) A non-interference language is a set of
non-interference policy rules that contains at least the function isolation.

And the non-interference policy of the system is a mapping that attaches a rule of the
language supported by the system to each domain of the system.

Definition 6.2.4 (Non-interference policy of a system) Let S = (D,A,U , δ,P) be a sys-
tem that supports the non-interference language N . The non-interference policy P is a
mapping P : D −→ N such that secret data are authorized to flow from a domain d to the
domains P(d)(d,S).

Then, we can define what is a secure method for a system equipped with a non-
interference policy.

Definition 6.2.5 (Secure method) Let S = (D,A,U , δ,P) be a system that supports the
non-interference language N . A method m installed in the domain d ∈ D is secure if and
only if:

∀(a, b, (s, s, t)) ∈ Sm, δ(T (a)) ∈ P(δ(T (b)))(δ(T (b)),S)

On device verification: compositional technique | version 2.9 | page 73 / 80

As we use for each system a language that is a subset of the rules defined by the
card issuer, the policy definition is flexible and several systems issued by the same card
issuer can be equipped with different policy languages. Moreover, the policy is adapted
to the system configuration: the set of domains that have access to a given data depends
on the domains hierarchy of the system.

Example 3 Remember example 1 of Chapter 3. Application jT icket provides to the card
holder certain number of tickets for public transportation. Tickets can be bought using
ePurse, and the act of ticket purchasing requires the invocation of service ePurse.payment
by jT icket. TheBank security domain owner allows data exchanges betweenEMV@Bank
and ePurse@Bank, and between ePurse@Bank and jT icket@Transport, but not be-
tween EMV@Bank and jT icket@Transport. On the other hand, Transport owner not
only allows data exchanges between ePurse@Bank and jT icket@Transport, but she
actually needs this exchange, otherwise her application is useless. Then, we can de-
fine that P(Bank) is isolation, and P(Transport) depends on the card configuration: if
Transport is a subdomain of Bank, we can use for example:

father : Domains× Systems −→ ℘(Domains)
d,S 7−→ {d′ | d′ = predS(d)}

or if Transport and Bank are two subdomains of the same domain:

brothers : Domains× Systems −→ ℘(Domains)
d,S 7−→ {d′ | predS(d) = predS(d′)}

6.3 On-device verification

Besides the signatures of methods that are verified and recorded by STAN tool, we have
to verify that incoming applications respect the non-interference policies of the domains
of the card.

6.3.1 On-device meta-data

We have to keep on-device a function for each element of the language supported by the
device. This code is part of the trusted base of the system and has to be provided by the
card issuer.

To simplify the policy management on the device, we precompute the authorized flows
between domains and keep a two dimensional array of bits dataflow of size n if the
smartcard can support n domains. Then dataflow[i][j] == 1 means that information
can flow from domain i to domain j. As secrets can circulate at least inside a domain,
dataflow[i][i] == 1 for each i.

Let us remark that for a system, that can support n domains and on which k domains
have been installed, dataflow[i][j] == 0 for each k ≤ i < n, k ≤ j < n, i 6= j.

6.3.2 Verification of a new application

When an new application is loaded with the function install(A, di,S), the signatures the
methods of A are verified using the STAN tool one by one. When the STAN verification
of a method m succeeds, then we have an assurance that the code received respects
the signature of flows. We have to add a next step consisting in the verification of the
compliance of the signature with the policy of the device in terms of non-interference.

On device verification: compositional technique | version 2.9 | page 74 / 80

Definition 6.3.1 (On-device verification) An application A is compliant with the non-
interference policy of a system if for each method m of each class C of A, for each
al1

φ→ bl2 ∈ Sm:

• either: l2 = p,

• or: l1 = s and δ(T (b)) = dj and dataflow[i][j] == 1,

• or the verification fails.

6.3.3 Addition of a domain

When a new domain is added on the system with the add(d,S), we assign to it the most
secure policy rule, that is “isolation”. The encoding of domains assigns to d the next
available index, let say i. The dataflow array does not need to be modified as it already
has dataflow[i][i] == 1 and dataflow[i][j] == 0 for i 6= j.

We may also want to add a new domain with a specific policy rule. For this purpose,
we propose to overload the function add:

add(d, p,S) = (D ∪ {d},A,U , δ,P[d 7→ p]).

To perform this addition, we have to:

• check that the policy rule p belongs to the policy language of S,

• check that the new policy rule is compliant with the already loaded ones,

• update the dataflow array.

The verification algorithm is given in the Algorithm 6.3.1. First, we have to apply the
policy rule of the new domain to the current hierarchy of domains of the system, Line 4.
Then, we have to check the compliance with the existing policy rules, that is to check that
the implicit transitivity of the policies does not break the requirements of the new domain
(done Lines 5 to 11). Then, if the verification succeeds, we update the array of authorized
flows (Lines 12 to 14).

6.3.4 Addition of a non-interference policy

We can also consider the case when the non-interference language of the system has to
be updated. This change is a major change in terms of security since the goal is to modify
the verification mechanism of the system. A new policy element is a pair, containing the
name of the policy rule (that will be later used by the domains) and the code of the
function itself used to compute it on a given hierarchy of domains. We cannot handle
the verification of such an element since we do not provide verification of behavioral
specifications. This extension mechanism can only be available for the card issuer and
the code of the function that implements the policy rule has to be signed. However,
as soon as we consider that the new code is trusted, the addition can be done without
any verification on-device: already existing domains are not impacted. If a domain is
later loaded with a new policy rule, the verification will be performed as described in the
previous subsection.

On device verification: compositional technique | version 2.9 | page 75 / 80

1: if p does not belong to the language of S then
2: return Fail
3: end if
4: Compute the set A = p(d,S)
5: for all j in A do
6: for all 0 ≤ k < n do
7: if dataflow[j][k] == 1 and k 6⊆ A then
8: return Fail
9: end if

10: end for
11: end for
12: for all j in A do
13: dataflow[i][j] == 1
14: end for
15: return Success

Algorithm 6.3.1: Addition of domain i with policy p on system S.

6.4 Conclusion

Privacy and confidentiality represent a real concern in modern computing systems espe-
cially in small open systems. Hence techniques to ensure their security are required. The
new model described in this chapter permits to detect undesirable data flows in terms of
non-interference in GlobalPlatform.

The model is easy to use. The main limitation to support evolution of systems comes
from the choices made in the STAN tool: once the flow signatures are computed, it is not
possible to change the security levels of data.

On device verification: compositional technique | version 2.9 | page 76 / 80

7. Conclusion

This document defines a set of compositional techniques for loading time on-device veri-
fication of several security properties. These techniques contribute to information protec-
tion security property verification and can be used on such restricted devices as smart
cards. In the presence of evolution, when applications can be updated or removed, and
new applications can arrive, the system should be able to verify autonomously the re-
ceived updates. To do that trusted card manager can be extended implementing the
proposed techniques.

One type of considered security property is a control flow of the application services
invocations. The document contains techniques for autonomous loading time verification
of a direct control flow, a transitive control flow and a global control flow, which also takes
into account an order of service invocations and provides a basis for integration with the
notation of WP4.

Another considered security property is a classical non-interference, that is imple-
mented for smart cards using lightweight verification approach. The document extends
this verification process with a technique for compositional verification of a security do-
mains hierarchy. The hierarchy is equipped with a non-interference policy and the system
is able to verify at load-time that the updated application complies with this policy.

The techniques that are described in the document can be extended to support the
updates of the device security policies. Task 6.3 only assumes conservative updates that
are incremental and do not require the re-verification of the applications already installed
on the device. Task 6.4 solutions will provide more complex techniques as extensions for
methodologies proposed in this deliverable, that will support an autonomous on-device
load time verification of all possible types of application and device security policy up-
dates, which are related to information flow.

On device verification: compositional technique | version 2.9 | page 77 / 80

Bibliography

[1] Common criteria. http://www.commoncriteriaportal.org.

[2] GlobalPlatform specifications. http://www.globalplatform.org/.

[3] Java Cardspecifications. http://java.sun.com/javacard/.

[4] Open mobile terminal platform. http://www.omtp.org.

[5] Stan, an information flow analysis for small embedded systems. http://
stan-project.gforge.inria.fr.

[6] A. Armenteros, B. Chetali, M. Felici, F. Massacci, V. Meduri, A. Tedeschi. Selected
change requirements and security properties. Report D1.1.1, 2010. Submitted to
the EU Consortium.

[7] A. Armenteros, B. Chetali, M. Felici, V. Meduri, Q.-H. Nguyen, A. Tedeschi, F. Paci,
E. Chiarani. D1.1 Description of the scenarios and their requirements. Se-
cureChange EU project public deliverable, www.securechange.eu, 2010.

[8] M. Avvenuti, C. Bernardeschi, N. D. Francesco, P. Masci. A tool for checking secure
interaction in Java Cards. Proc. of EWDC2009, 2009.

[9] V. banking services. http://www.venyon.com/banking. Available on the web.

[10] G. Barthe, D. Gurov, M. Huisman. Compositional verification of secure applet in-
teractions. Proceedings of the 5th International Conference on Fundamental Ap-
proaches to Software Engineering, wolumen 2306 serii Lecture Notes in Computer
Science, strony 15–32. Springer, 2002.

[11] F. Besson, T. Blanc, C. Fournet, A. D. Gordon. From stack inspection to access con-
trol: a security analysis for libraries. Proceedings of the 17th workshop on Computer
Security Foundations (CSFW04), strona 61. IEEE Computer Society, 2004.

[12] P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V. Wiels, G. Zanon. Checking Secure
Interactions of Smart Card Applets: extended version. Journal of Computer Security,
10:369—-398, 2002.

[13] Z. Chen. Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Addison-Wesley Longman Publishing Co., Inc., 2000.

[14] M. credit cards. http://www.miles-and-more.com. Available on the web.

[15] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts, F. Piessens, I. Siahaan,
D. Vanoverberghe. Security-by-Contract on the .NET platform. 13(1):25 – 32, 2008.

On device verification: compositional technique | version 2.9 | page 78 / 80

http://www.commoncriteriaportal.org
http://www.globalplatform.org/
http://java.sun.com/javacard/
http://www.omtp.org
http://stan-project.gforge.inria.fr
http://stan-project.gforge.inria.fr

[16] D. Deville, G. Grimaud. Building an “impossible” verifier on a Java Card. Proc. of
WIESS’02, strony 2–2. USENIX Association, 2002.

[17] N. Dragoni, F. Massacci, K. Naliuka, I. Siahaan. Security-by-contract: toward a
semantics for digital signatures on mobile code. Proceedings of the 4th European
PKI Workshop: Theory and Practice (EuroPKI07). Springer, 2007.

[18] N. Dragoni, F. Massacci, C. Schaefer, T. Walter, E. Vetillard. A Security-by-Contract
Architecture for Pervasive Services. SECPerU, strony 49–54, 2007.

[19] W. Enck, M. Ongtang, P. McDaniel. On lightweight mobile phone application certifi-
cation. CCS09, strony 235–245, Chicago, IL, USA, November 2009. ACM.

[20] E. Fromentin, C. Jard, G.-V. Jourdan, M. Raynal. On-the-fly analysis of distributed
computations. Information Processing Letters, 54(5):267–274, 1995.

[21] D. Ghindici, G. Grimaud, I. Simplot-Ryl. An information flow verifier for small embed-
ded systems. Proc. Workshop in Information Security Theory and Practices 2007
Smart Cards, Mobile and Ubiquitous Computing Systems, number 4462 serii Lec-
ture Notes in Computer Science, strony 189–201, Heraklion, Crete, Greece, 2007.
Springer-Verlag.

[22] D. Ghindici, I. Simplot-Ryl. On practical information flow policies for java-enabled
multiapplication smart cards. Proc. 8th Smart Card research and Advanced Ap-
plication IFIP Conference (CARDIS 2008), wolumen 5189 serii Lecture Notes in
Computer Science, strony 32–47, Egham, Surrey, UK, 2008. Springer.

[23] P. Girard. Which security policy for multiapplication smart cards? USENIX Workshop
on Smartcard Technology. USENIX Association, 1999.

[24] J. A. Goguen, J. Meseguer. Security policies and security models. Proc. IEEE
Symposium on Security and Privacy, strony 11–20, 1982.

[25] D. Gurov, M. Huisman, C. Sprenger. Compositional verification of sequential pro-
grams with procedures. Information and Computation, 206(7):840–868, 2008.

[26] M. Huisman, D. Gurov, C. Sprenger, G. Chugunov. Checking absence of illicit applet
interactions: a case study. FASE’04, wolumen 2984 serii Lecture Notes in Computer
Science, strony 84–98, 2004.

[27] G. Inc. GlobalPlatform Card Specification, Version 2.2. Specification 2.2, 2006.

[28] I. Ion, B. Dragovic, B. Crispo. Extending the Java Virtual Machine to Enforce Fine-
Grained Security Policies in Mobile Devices. ACSAC, strony 233–242, 2007.

[29] J. Jürjens. Secure Systems Development with UML. Springer Verlag, 2004.

[30] X. Leroy. On-card bytecode verification for Java Card. Smart Card Programming
and Security, wolumen 2140 serii LNCS, strony 150–164. SV, 2001.

[31] X. Leroy. Bytecode verification on Java smart cards. Software – Practice & Experi-
ence, 32(4):319–340, April 2002.

[32] S. Microsystems. Runtime environment specification. Java CardTM platform, version
2.2.2. Specification 2.2.2., Sun Microsystems, 2006.

On device verification: compositional technique | version 2.9 | page 79 / 80

[33] I. Narasamdya, M. Périn. Certification of smart-card applications in Common Crite-
ria. SAC ’09, strony 601–608. ACM, 2009.

[34] N. Narasimhan, R. Vemuri. Specification of control flow properties for verification
of synthesized vhdl designs. Proc. 1st International Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD’96), wolumen 1166 serii Lecture Notes in
Computer Science, strony 327–345. Springer, 1996.

[35] G. C. Necula. Proof-carrying code. Proc. 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL97), strony 106–119, Paris, France,
1997.

[36] M. Ongtang, S. McLaughlin, W. Enck, P. McDaniel. Semantically rich application-
centric security in Android. Proceedings of the 25th Annual Computer Security Ap-
plications Conference (ACSAC09), strony 340–349. IEEE Computer Society, 2009.

[37] P. project website. http://www.cert.fr/francais/deri/wiels/pacap/.

[38] E. Rose. Lightweight bytecode verification. Journal of Automated Reasoning, 31(3-
4):303–334, 2003.

[39] A. Sabelfeld, A. C. Myers. Language-based information-flow security. IEEE Journal
on Selected Areas in Communications, 21(1):5–19, 2003.

[40] D. Sauveron. Multiapplication smart card: Towards an open smart card? ISTR,
2009.

[41] G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, D. Toll. Verification of a
formal security model for multiapplicative smart cards. ESORICS’00, wolumen 1895
serii Lecture Notes in Computer Science, 2000.

[42] SecureChange. Deliverable 4.1, 2010.
http://securechange.eu/sites/default/files/deliverables/D4.1 Security Mo-
delling Notation for Evolving Systems.pdf.

[43] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, D. DuVarney. Model-carrying
code: a practical approach for safe execution of untrusted applications. strony 15–
28, 2003.

[44] G. J. C. solutions. http://www.gemalto.com/techno/javacard/. Available on the web.

[45] M. Tanaka. A smart card evaluation experience under a Japanese scheme.
http://www.commoncriteriaportal.org/iccc/9iccc/pdf/b2502.pdf. Presentation avail-
able on the web., 2008.

[46] N. Yoshioka, H. Washizaki, K. Maruyama. A survey on security patterns. Progress
in Informatics, (5):35–47, 2008.

[47] S. Zdancewic. Challenges for information-flow security. Proc. 1st International Work-
shop on Programming Language Interference and Dependence (PLID04), Verona,
Italy, 2004.

On device verification: compositional technique | version 2.9 | page 80 / 80

	Document information
	Document change record
	Executive summary
	Introduction: Overview of the compositional on-device verification
	The system
	Multi-application Smart Card Architecture
	Security properties
	Security Properties of the Case Study
	Control flow property
	Non-interference property

	Verification techniques properties
	Verification Workflows
	On-device Verification
	Lightweight Verification

	Threat model
	Related Works

	Notations
	Mathematical notations
	Functions
	Graphs

	Notations for programs
	Object-oriented notations
	Application level definitions
	Graphs of the programs

	On-device system
	Definition of the system
	Changes: addition of new elements in a system

	Direct Control Flow
	Introduction
	Formal Security Model
	Specifications of Contract and Components
	Different approaches for accepting updates

	Validation of the Security-by-Contract Approach
	Security-by-Contract Architecture
	Link with WP4 Notation
	Conclusions

	Transitive Control Flow
	Introduction
	Model for control of service calls between applications
	Systems and security policies
	Semantics of the security policy
	Generic security policies

	On-device algorithms
	Addition of a new application
	Addition of new domains

	Implementation on Java-enabled smart cards
	Concrete instantiation of the model
	Encoding control flow policies
	Integration of on-device algorithms

	Multi-application use case on smart card
	Overview of the use case
	Implementation and deployment considerations
	Enforcement of control flow policies

	Conclusion

	Global Policy
	Introduction
	Notations and definitions
	Definition of the global policy
	Global policy footprint of a method
	Definition of the footprint of a method
	Properties of the operations on footprints
	Compositionality of the footprint computation

	Implementation of the footprint computation
	On-device verification
	Lightweight verification
	Encoding of the embedded proof
	On-device meta-data
	Verification algorithm

	Conclusion

	Non-interference
	Overview of the information flow model of the Stan tool
	Security levels
	Flow relation
	Flow signature of a method
	Enforcing non-interference
	Implementation

	Non-interference policies for GlobalPlatform
	GlobalPlatform policies

	On-device verification
	On-device meta-data
	Verification of a new application
	Addition of a domain
	Addition of a non-interference policy

	Conclusion

	Conclusion
	Bibliography

